Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug:264:346-361.
doi: 10.1016/j.jss.2021.02.045. Epub 2021 Apr 10.

Machine Learning and Surgical Outcomes Prediction: A Systematic Review

Affiliations

Machine Learning and Surgical Outcomes Prediction: A Systematic Review

Omar Elfanagely et al. J Surg Res. 2021 Aug.

Abstract

Background: Machine learning (ML) has garnered increasing attention as a means to quantitatively analyze the growing and complex medical data to improve individualized patient care. We herein aim to critically examine the current state of ML in predicting surgical outcomes, evaluate the quality of currently available research, and propose areas of improvement for future uses of ML in surgery.

Methods: A systematic review was conducted in accordance with the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) checklist. PubMed, MEDLINE, and Embase databases were reviewed under search syntax "machine learning" and "surgery" for papers published between 2015 and 2020.

Results: Of the initial 2677 studies, 45 papers met inclusion and exclusion criteria. Fourteen different subspecialties were represented with neurosurgery being most common. The most frequently used ML algorithms were random forest (n = 19), artificial neural network (n = 17), and logistic regression (n = 17). Common outcomes included postoperative mortality, complications, patient reported quality of life and pain improvement. All studies which compared ML algorithms to conventional studies which used area under the curve (AUC) to measure accuracy found improved outcome prediction with ML models.

Conclusions: While still in its early stages, ML models offer surgeons an opportunity to capitalize on the myriad of clinical data available and improve individualized patient care. Limitations included heterogeneous outcome and imperfect quality of some of the papers. We therefore urge future research to agree upon methods of outcome reporting and require basic quality standards.

Keywords: Artificial intelligence; Machine learning; Natural language processing; Surgical outcomes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources