Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 13;18(1):74.
doi: 10.1186/s12985-021-01544-w.

The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma

Affiliations
Review

The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma

Jinyan Xie et al. Virol J. .

Abstract

Background: Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host's antiviral responses to achieve persistent infection.

Conclusions: This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.

Keywords: Cytokine; Hepatitis virus; Hepatocellular carcinoma; JAK-STAT signaling pathway; SOCS.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a SOCS protein structure. All SOCS proteins contain a central SH2 domain, an amino-terminal domain of variable length and a carboxy-terminal SOCS box. The SH2 domain recognizes and binds phosphorylated tyrosine residues on its specific substrate, such as JAK proteins. The SOCS box can interact with elongin B, elongin C, and cullin 5, utilizes the RING-finger-domain-only protein to recruit E2 ubiquitin-transferase, and ubiquitinates JAKs and other cytokine receptors, ultimately targeting them for proteasomal degradation. b Mechanism by which the SOCS proteins suppress the JAK-STAT pathway and TLR signaling pathway. Cytokines or interferons bind cellular membrane surface receptors, which activate and phosphorylate receptor-associated JAK proteins. Activated JAK proteins phosphorylate receptor cytoplasmic domains, which begin to recruit STATs, enabling their dimerization. Next, the dimerized complex enters the nucleus to initiate the transcription of different target genes, including the SOCS gene and immune effectors. SOCS proteins negatively regulate these pathways. In the JAK-STAT pathway, SOCS proteins compete with recruited STAT proteins for shared phospho-tyrosine residues or inhibit the activity of JAKs by the KIR domain of SOCS1 and SOCS3. Additionally, the SOCS box mediates the ubiquitination and degradation of bound receptor components. In the Toll-like receptor signaling pathway, SOCS1 and SOCS3 use the SH2 region to recognize and bind tyrosine-phosphorylated Mal, TNF receptor-associated factor 3/6 (TRAF3/6) and IRF7 [12, 17, 22]

Similar articles

Cited by

References

    1. Zhang YY, Hu KQ. Rethinking the pathogenesis of hepatitis B virus (HBV) infection. J Med Virol. 2015;87:1989–1999. doi: 10.1002/jmv.24270. - DOI - PubMed
    1. Martinello M, Hajarizadeh B, Grebely J, Dore GJ, Matthews GV. Management of acute HCV infection in the era of direct-acting antiviral therapy. Nat Rev Gastroenterol Hepatol. 2018;15:412–424. doi: 10.1038/s41575-018-0026-5. - DOI - PubMed
    1. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009;227:75–86. doi: 10.1111/j.1600-065X.2008.00737.x. - DOI - PMC - PubMed
    1. Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37(Suppl 1):S34–45. doi: 10.1002/eji.200737772. - DOI - PMC - PubMed
    1. Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev. 2017;33:83–93. doi: 10.1016/j.cytogfr.2016.11.004. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances