Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Aug;18(8):525-543.
doi: 10.1038/s41575-021-00438-0. Epub 2021 Apr 13.

Advances in immunotherapy for hepatocellular carcinoma

Affiliations
Review

Advances in immunotherapy for hepatocellular carcinoma

Bruno Sangro et al. Nat Rev Gastroenterol Hepatol. 2021 Aug.

Abstract

Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.

PubMed Disclaimer

Conflict of interest statement

I.M. reports advisory roles with Roche-Genentech, Bristol-Myers Squibb, CYTOMX, Incyte, MedImmune, Tusk, F-Star, Genmab, Molecular Partners, Alligator, Bioncotech, MSD, Merck Serono, Boehringer Ingelheim, Astra Zeneca, Numab, Catalym and Bayer, and research funding from Roche, BMS, Alligator and Bioncotech. B.S. reports consultancy fees from Adaptimmune, Astra Zeneca, Bayer, BMS, BTG, Eli Lilly, Ipsen, Novartis, Merck, Roche, Sirtex Medical and Terumo and speaker fees from Astra Zeneca, Bayer, BMS, BTG, Eli Lilly, Ipsen, Novartis, Merck, Roche, Sirtex Medical, Terumo BMS and Sirtex Medical. P.S. and S.H.-S. report no competing interests.

Figures

Fig. 1
Fig. 1. Key players in the hepatocellular carcinoma immune tumour microenvironment.
Hepatocellular carcinoma (HCC) tumour cells can escape immune attack from the host if they fail to effectively present antigens and remain unrecognized by the immune system, or if the tumour microenvironment is rich in cells and soluble molecules that deactivate or interfere with the action of tumour-killing cytotoxic T lymphocytes. A summary of this complex network of interactions is shown. Negative effects on the immune response are indicated by red arrows and enhancing effects are indicated by black arrows. Cells and molecules involved represent potential therapeutic targets through the blockade of negative signals or the stimulation of positive signals. Currently available therapeutic agents in orange boxes indicate their main mechanism of action. Effector T cells, natural killer (NK) cells and dendritic cells (DC) have an overall positive effect on immune tumour rejection, whereas regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), M2-polarized tumour-associated macrophages (TAM M2) and neutrophils have a negative effect. To be targeted by the immune system, HCC cells should express antigens through gene mutations leading to neoantigens (neoAgs) or gene deregulations leading to tumour-associated antigens (TAAs). Mutations in the β-catenin gene might impair the recruitment of conventional type 1 dendritic cells (cDC1) that are key in attracting immune effector cells, whereas the chemokine receptor 6 (CCR6) and chemokine ligand 20 (CCL20) axis attracts Treg cells. anti-CTLA4, CTLA4 inhibitor; anti-VEGF, VEGF inhibitors; anti-VEGFR, VEGFR inhibitors; CTLA4, cytotoxic T lymphocyte-associated antigen 4; GM-CSF, granulocyte–macrophage colony-stimulating factor; HGF, hepatocyte growth factor; IDO, indoleamine 2,3-dioxygenase-1; TGFβ, transforming growth factor-β; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
Fig. 2
Fig. 2. Expanding the efficacy of ICIs in HCC through combination strategies.
Combination strategies are shown for immune checkpoint inhibitors (ICIs) with other therapeutic tools, established or in development, that are being explored in preclinical or clinical studies based on their additive or potentially synergistic mechanisms of action. HCC, hepatocellular carcinoma; mAb, monoclonal antibody.
Fig. 3
Fig. 3. Combinations of ICIs with other systemic agents.
Combination immune checkpoint inhibitor (ICI) strategies reported or in ongoing phase III clinical trials are presented. CTLA4, cytotoxic T lymphocyte-associated antigen 4; VEGF, vascular endothelial growth factor.
Fig. 4
Fig. 4. Immunotherapy of HCC in 2021.
Single agents and combinations approved or under study in randomized trials across tumour stages are shown. Those in bold type are already approved in at least one country. HCC, hepatocellular carcinoma; VEGF, vascular endothelial growth factor.

References

    1. Ferlay J, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937. - DOI - PubMed
    1. WHO. Liver. http://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf (2018).
    1. Llovet JM, et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2016;2:16018. doi: 10.1038/nrdp.2016.18. - DOI - PubMed
    1. European Association for the Study of the Liver EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018;69:182–236. doi: 10.1016/j.jhep.2018.03.019. - DOI - PubMed
    1. Heimbach JK, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–380. doi: 10.1002/hep.29086. - DOI - PubMed

Publication types

MeSH terms

Substances