Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 14;11(1):58.
doi: 10.1186/s13613-021-00845-1.

Perioperative hemodynamic optimization: from guidelines to implementation-an experts' opinion paper

Affiliations
Review

Perioperative hemodynamic optimization: from guidelines to implementation-an experts' opinion paper

Jean-Luc Fellahi et al. Ann Intensive Care. .

Abstract

Despite a large body of evidence, the implementation of guidelines on hemodynamic optimization and goal-directed therapy remains limited in daily routine practice. To facilitate/accelerate this implementation, a panel of experts in the field proposes an approach based on six relevant questions/answers that are frequently mentioned by clinicians, using a critical appraisal of the literature and a modified Delphi process. The mean arterial pressure is a major determinant of organ perfusion, so that the authors unanimously recommend not to tolerate absolute values below 65 mmHg during surgery to reduce the risk of postoperative organ dysfunction. Despite well-identified limitations, the authors unanimously propose the use of dynamic indices to rationalize fluid therapy in a large number of patients undergoing non-cardiac surgery, pending the implementation of a "validity criteria checklist" before applying volume expansion. The authors recommend with a good agreement mini- or non-invasive stroke volume/cardiac output monitoring in moderate to high-risk surgical patients to optimize fluid therapy on an individual basis and avoid volume overload. The authors propose to use fluids and vasoconstrictors in combination to achieve optimal blood flow and maintain perfusion pressure above the thresholds considered at risk. Although purchase of disposable sensors and stand-alone monitors will result in additional costs, the authors unanimously acknowledge that there are data strongly suggesting this may be counterbalanced by a sustained reduction in postoperative morbidity and hospital lengths of stay. Beside existing guidelines, knowledge and explicit clinical reasoning tools followed by decision algorithms are mandatory to implement individualized hemodynamic optimization strategies and reduce postoperative morbidity and duration of hospital stay in high-risk surgical patients.

Keywords: Blood pressure; Fluid responsiveness; Health costs; Hemodynamic optimization; High-risk surgery; Perioperative morbidity; Vasopressors.

PubMed Disclaimer

Conflict of interest statement

JLF, EF, CV, OC, OH, JL, KA, BC, and DL are members of an advisory board working for Edwards Lifesciences and have received honoraria from the Company for their participation to the board. JLF and DL have received honoraria from Masimo for participation to hemodynamic master classes. EF reported receiving consulting fees from Drager Medical, GE Healthcare, and Orion Pharma and lecture fees from Fresenius Kabi, Baxter, and Fisher and Paykel Healthcare. EG has received lecture fees from Edwards Lifesciences and research support from Philips and Radiometer. MB has received lecture fees from Edwards Lifesciences and Maquet Pulsion. KA has received lecture fees from LFB, Fisher and Paykel Healthcare, and Baxter. BT has no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1
Typical intraoperative goal-directed therapy algorithm based on an individualized approach. MAP mean arterial pressure, PPV pulse pressure variation, SVV stroke volume variation. Values for PPV/SVV, MAP and cardiac index are indicative and must be adapted on an individual basis. The use of vasopressors could also be considered when diastolic arterial pressure < 40 mmHg

Similar articles

Cited by

References

    1. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, et al. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anaesthesiology. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380:1059–65. doi: 10.1016/S0140-6736(12)61148-9. - DOI - PMC - PubMed
    1. Som A, Maitra S, Bhattacharjee S, Baidya DK. Goal directed fluid therapy decreases postoperative morbidity but not mortality in major non-cardiac surgery: a meta-analysis and trial sequential analysis of randomized controlled trials. J Anesth. 2017;31:66–81. doi: 10.1007/s00540-016-2261-7. - DOI - PubMed
    1. McNally SJ, MacKinnon M, Hawkins M. Practical barriers to the implementation of early goal directed therapy in the UK: trainee skills and awareness. Scott Med J. 2009;54:22–24. doi: 10.1258/RSMSMJ.54.3.22. - DOI - PubMed
    1. Messina A, Robba C, Calabro L, Zambelli D, Lannuzzi F, Molinari E, et al. Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care. 2021;25:43. doi: 10.1186/s13054-021-03464-1. - DOI - PMC - PubMed
    1. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PAC, et al. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999;282:1458–1465. doi: 10.1001/jama.282.15.1458. - DOI - PubMed

LinkOut - more resources