Protease-mediated processing of Argonaute proteins controls small RNA association
- PMID: 33852894
- DOI: 10.1016/j.molcel.2021.03.029
Protease-mediated processing of Argonaute proteins controls small RNA association
Abstract
Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.
Keywords: 22G RNA; C. elegans; DPF-3; DPP8; DPP9; DPPIV; Dipeptidyl peptidase; P-granule; WAGO-1; WAGO-3.
Copyright © 2021 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
