Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 14;21(1):722.
doi: 10.1186/s12889-021-10784-y.

The effect of cognition and affect on preventive behaviors during the COVID-19 pandemic: a cross-sectional study in China

Affiliations

The effect of cognition and affect on preventive behaviors during the COVID-19 pandemic: a cross-sectional study in China

Fei Shen et al. BMC Public Health. .

Abstract

Background: The global outbreak of COVID-19 has become an international public health crisis. Specific antiviral treatments for COVID-19 are not yet available, and prevention is of particular importance to fight the virus. This study tends to explore and compare the roles of cognitive and affective factors in predicting preventive behavior adoption during the COVID-19 pandemic in China.

Methods: An online survey using a quota sampling method to collect responses from 3000 Chinese adults was conducted from March 2, 2020 to March 23, 2020. Questions included sociodemographic features, coronavirus knowledge, negative emotion, risk perception, and behavioral responses. Multiple regression analyses were conducted to examine the predictors of behavioral responses toward COVID-19.

Results: On average, respondents had low levels of knowledge about COVID-19 (the overall correct response rate was 7.5%). Most respondents reported moderate to strong negative emotions towards the virus (3.47 out of 5). The average reported perceived chance of infection was 23.89%. For behavioral responses, respondents reported low frequencies of going out for activities (1.98 out of 4) and high frequencies of taking preventive measures (3.22 out of 4). Behavioral responses toward COVID-19 were found to be determined by cognitive and affective variables. Knowledge was negatively related to frequency of going out for activities (β = - 0.11, p < .001). Negative emotion (β = 0.34, p < .001), and risk perception (β = 0.05, p = .007) were positively associated with going out for activities. The explanatory power of affective variables (ΔR2 = 12.1%) was greater than cognitive variables (ΔR2 = 1.0%). For preventive behaviors, knowledge was positively associated with preventive behaviors (β = 0.22, p < .001). Negative emotion (β = - 0.28, p < .001) and risk perception (β = - 0.05, p = .002) were all negatively associated with preventive measures. Affective variables still showed stronger explanatory power (ΔR2 = 8%) than cognitive variables (ΔR2 = 4.4%) in predicting preventive behaviors.

Conclusions: After the rising period of the COVID-19 outbreak in mainland China, cognitive and affective variables still played important roles in predicting behavioral responses. Compared with cognitive factors, affective factors demonstrated stronger explanatory power in predicting behavioral responses toward COVID-19. The findings may have implications for enhancing individual compliance with guidelines of adopting preventive behaviors in response to COVID-19.

Keywords: Affect; COVID-19; Knowledge; Preventive behaviors.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020;20(7):773. doi: 10.1016/S1473-3099(20)30195-X. - DOI - PMC - PubMed
    1. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, Jit M, Klepac P, Flasche S, Clifford S, Pearson CAB, Munday JD, Abbott S, Gibbs H, Rosello A, Quilty BJ, Jombart T, Sun F, Diamond C, Gimma A, van Zandvoort K, Funk S, Jarvis CI, Edmunds WJ, Bosse NI, Hellewell J. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. 2020;5(5):e261–e270. doi: 10.1016/S2468-2667(20)30073-6. - DOI - PMC - PubMed
    1. Wong LP, Hung C-C, Alias H, Lee TS-H. Anxiety symptoms and preventive measures during the COVID-19 outbreak in Taiwan. BMC Psychiatry. 2020;20(1):376. doi: 10.1186/s12888-020-02786-8. - DOI - PMC - PubMed
    1. Islam MS, Rahman KM, Sun Y, Qureshi MO, Abdi I, Chughtai AA, Seale H. Current knowledge of COVID-19 and infection prevention and control strategies in healthcare settings: a global analysis. Infect Control Hosp Epidemiol. 2020;41(10):1196–1206. doi: 10.1017/ice.2020.237. - DOI - PMC - PubMed
    1. Clements JM. Knowledge and behaviors toward COVID-19 among US residents during the early days of the pandemic: cross-sectional online questionnaire. JMIR Public Health Surveill. 2020;6(2):e19161. doi: 10.2196/19161. - DOI - PMC - PubMed

Publication types