Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 14;20(1):184.
doi: 10.1186/s12936-021-03704-3.

Testing configurations of attractive toxic sugar bait (ATSB) stations in Mali, West Africa, for improving the control of malaria parasite transmission by vector mosquitoes and minimizing their effect on non-target insects

Affiliations

Testing configurations of attractive toxic sugar bait (ATSB) stations in Mali, West Africa, for improving the control of malaria parasite transmission by vector mosquitoes and minimizing their effect on non-target insects

Rabiatou A Diarra et al. Malar J. .

Abstract

Background: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms.

Methods: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments.

Results: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged.

Conclusions: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.

Keywords: ASB; ATSB; Anopheles gambiae s.l.; Diptera; Hymenoptera; Lepidoptera; Non-target organisms (NTOs).

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. WHO . World Malaria report 2018. Geneva: World Health Organization; 2018.
    1. Schlein Y, Müller GC. An approach to mosquito control: using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol. 2008;45:384–390. doi: 10.1603/0022-2585(2008)45[384:AATMCU]2.0.CO;2. - DOI - PubMed
    1. Müller GC, Junnila A, Qualls W, Revay EE, Kline DL, Allan S, et al. Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar baits. Med Vet Entomol. 2010;24:346–351. doi: 10.1111/j.1365-2915.2010.00876.x. - DOI - PubMed
    1. Schlein Y, Müller GC. Diurnal resting behavior of adult Culex pipiens in an arid habitat in Israel and possible control measurements with toxic sugar baits. Acta Trop. 2012;124:48–53. doi: 10.1016/j.actatropica.2012.06.007. - DOI - PubMed
    1. Junnila A, Revay EE, Müller GC, Kravchenko V, Qualls WA, Allen SA, Beier JC, Schlein Y. Efficacy of attractive toxic sugar baits (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-cyclodextrin as the active ingredient. Acta Trop. 2015;152:195–200. doi: 10.1016/j.actatropica.2015.09.006. - DOI - PMC - PubMed