Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 14;6(2):e01135-20.
doi: 10.1128/mSphere.01135-20.

Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China

Affiliations

Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China

Dongdong Yin et al. mSphere. .

Abstract

Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria.

Keywords: APEC; IncI2; colistin resistance; mcr-1; plasmids.

PubMed Disclaimer

Figures

FIG 1
FIG 1
Anhui Province (in gray) and cities (in yellow) where APEC-infected chickens were collected in this study.
FIG 2
FIG 2
Sequence alignment analysis of IncI2 mcr-1-harboring plasmids. (A) Sequence comparison of mcr-1-harboring plasmids. (B) Comparative schematic representation of the flanking regions of the mcr-1 genes in IncI2 plasmids. Areas shaded in gray indicate homologies in the corresponding genetic environment on each plasmid. The open reading frames are shown as boxes or arrows. Antibiotic resistance-encoding genes are indicated with red boxes/arrows. Blue boxes/arrows denote transposon- and integron-associated genes. White boxes/arrows indicate hypothetical proteins or mobile element proteins.

Similar articles

Cited by

References

    1. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. doi:10.1016/S1473-3099(15)00424-7. - DOI - PubMed
    1. Shen Z, Wang Y, Shen Y, Shen J, Wu C. 2016. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 16:293. doi:10.1016/S1473-3099(16)00061-X. - DOI - PubMed
    1. Rhouma M, Beaudry F, Theriault W, Letellier A. 2016. Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and One Health perspectives. Front Microbiol 7:1789. doi:10.3389/fmicb.2016.01789. - DOI - PMC - PubMed
    1. Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, Ye H, Liu F, Srinivas S, Li D, Zhu B, Liu YH, Tian GB, Feng Y. 2016. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog 12:e1005957. doi:10.1371/journal.ppat.1005957. - DOI - PMC - PubMed
    1. Wang Y, Tian G-B, Zhang R, Shen Y, Tyrrell JM, Huang X, Zhou H, Lei L, Li H-Y, Doi Y, Fang Y, Ren H, Zhong L-L, Shen Z, Zeng K-J, Wang S, Liu J-H, Wu C, Walsh TR, Shen J. 2017. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis 17:390–399. doi:10.1016/S1473-3099(16)30527-8. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources