Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 23:14:568051.
doi: 10.3389/fnhum.2020.568051. eCollection 2020.

International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

Adam D Farmer  1 Adam Strzelczyk  2 Alessandra Finisguerra  3 Alexander V Gourine  4 Alireza Gharabaghi  5 Alkomiet Hasan  6   7 Andreas M Burger  8 Andrés M Jaramillo  9 Ann Mertens  10 Arshad Majid  11 Bart Verkuil  12 Bashar W Badran  13 Carlos Ventura-Bort  14 Charly Gaul  15 Christian Beste  16 Christopher M Warren  17 Daniel S Quintana  18   19   20 Dorothea Hämmerer  21   22   23 Elena Freri  24 Eleni Frangos  25 Eleonora Tobaldini  26   27 Eugenijus Kaniusas  28   29 Felix Rosenow  2 Fioravante Capone  30 Fivos Panetsos  31 Gareth L Ackland  32 Gaurav Kaithwas  33 Georgia H O'Leary  13 Hannah Genheimer  34 Heidi I L Jacobs  35   36 Ilse Van Diest  37 Jean Schoenen  38 Jessica Redgrave  11 Jiliang Fang  39 Jim Deuchars  40 Jozsef C Széles  41 Julian F Thayer  42 Kaushik More  43   44 Kristl Vonck  10 Laura Steenbergen  45 Lauro C Vianna  46 Lisa M McTeague  13 Mareike Ludwig  47 Maria G Veldhuizen  48 Marijke De Couck  49   50 Marina Casazza  51 Marius Keute  5 Marom Bikson  52 Marta Andreatta  34   53 Martina D'Agostini  37 Mathias Weymar  14   54 Matthew Betts  47   55   56 Matthias Prigge  44 Michael Kaess  57   58 Michael Roden  59   60   61 Michelle Thai  62 Nathaniel M Schuster  63 Nicola Montano  26   27 Niels Hansen  64   65 Nils B Kroemer  66 Peijing Rong  67 Rico Fischer  68 Robert H Howland  69 Roberta Sclocco  70   71 Roberta Sellaro  72   73   74 Ronald G Garcia  75   76 Sebastian Bauer  2 Sofiya Gancheva  59   60   77 Stavros Stavrakis  78 Stefan Kampusch  28   29 Susan A Deuchars  40 Sven Wehner  79 Sylvain Laborde  80 Taras Usichenko  81   82 Thomas Polak  83 Tino Zaehle  84 Uirassu Borges  80   85 Vanessa Teckentrup  66 Vera K Jandackova  86   87 Vitaly Napadow  70   71 Julian Koenig  57   88
Affiliations
Review

International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

Adam D Farmer et al. Front Hum Neurosci. .

Abstract

Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.

Keywords: guidelines & recommendations; minimum reporting standards; transcutaneous auricular vagus nerve stimulation; transcutaneous cervical vagus nerve stimulation; transcutaneous vagus nerve stimulation.

PubMed Disclaimer

Conflict of interest statement

EK and SK are employed by company SzeleSTIM GmbH. JS received honoraria from SzeleSTIM GmbH and owns patents in the field of the auricular vagus nerve stimulation. EK, SK, and JS are shareholders of SzeleSTIM GmbH. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer TS declared a shared affiliation, with no collaboration, with one of the authors HJ, to the handling editor at the time of review.

Figures

Figure 1
Figure 1
Proportion of published research articles including the keyword “transcutaneous vagus nerve stimulation” listed on PubMed by year.
Figure 2
Figure 2
Minimum Reporting Standards for Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

References

    1. Afanasiev S. A., Pavliukova E. N., Kuzmichkina M. A., Rebrova T. Y., Anfinogenova Y., Likhomanov K. S., et al. . (2016). Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 21, 548–556. 10.1111/anec.12349 - DOI - PMC - PubMed
    1. Aihua L., Lu S., Liping L., Xiuru W., Hua L., Yuping W. (2014). A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 39, 105–110. 10.1016/j.yebeh.2014.08.005 - DOI - PubMed
    1. Alexander G. M., Huang Y. Z., Soderblom E. J., He X.-P., Moseley M. A., McNamara J. O. (2017). Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J. Neurochem. 140, 629–644. 10.1111/jnc.13931 - DOI - PMC - PubMed
    1. Allchin R. E., Batten T. F., McWilliam P. N., Vaughan P. F. (1994). Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp. Physiol. 79, 265–268. 10.1113/expphysiol.1994.sp003761 - DOI - PubMed
    1. Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. . (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881. 10.1016/j.brs.2017.05.006 - DOI - PubMed