Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 2;27(37):9482-9494.
doi: 10.1002/chem.202100845. Epub 2021 May 17.

Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach

Affiliations
Review

Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach

Ruben Mirzoyan et al. Chemistry. .

Abstract

In the past decade, transition metal complexes have gained momentum as electron spin-based quantum bit (qubit) candidates due to their synthetic tunability and long achievable coherence times. The decoherence of magnetic quantum states imposes a limit on the use of these qubits for quantum information technologies, such as quantum computing, sensing, and communication. With rapid recent development in the field of molecular quantum information science, a variety of chemical design principles for prolonging coherence in molecular transition metal qubits have been proposed. Here the spin-spin, motional, and spin-phonon regimes of decoherence are delineated, outlining design principles for each. It is shown how dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.

Keywords: decoherence; electronic structure; ligand field theory; magnetic properties; qubit.

PubMed Disclaimer

References

    1. J. P. Dowling, G. J. Milburn, Philos. Trans. Math. Phys. Eng. Sci. 2003, 361, 1655-1674.
    1. M. R. Wasielewski, M. D. E. Forbes, N. L. Frank, K. Kowalski, G. D. Scholes, J. Yuen-Zhou, M. A. Baldo, D. E. Freedman, R. H. Goldsmith, T. Goodson, M. L. Kirk, J. K. McCusker, J. P. Ogilvie, D. A. Shultz, S. Stoll, K. B. Whaley, Nat. Chem. Rev. 2020, 4, 490-504.
    1. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, Cambridge, 2010.
    1. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, Oxford, UK; New York, 2001.
    1. I. Cimatti, L. Bondì, G. Serrano, L. Malavolti, B. Cortigiani, E. Velez-Fort, D. Betto, A. Ouerghi, N. B. Brookes, S. Loth, M. Mannini, F. Totti, R. Sessoli, Nanoscale Horiz. 2019, 4, 1202-1210.

LinkOut - more resources