Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022;18(2):104-112.
doi: 10.2174/1573405617666210414101941.

Coronavirus-related Disease Pandemic: A Review on Machine Learning Approaches and Treatment Trials on Diagnosed Population for Future Clinical Decision Support

Affiliations
Review

Coronavirus-related Disease Pandemic: A Review on Machine Learning Approaches and Treatment Trials on Diagnosed Population for Future Clinical Decision Support

Reyana A et al. Curr Med Imaging. 2022.

Abstract

Objective: Coronavirus-related disease, a deadly illness, has raised public health issues worldwide. The majority of individuals infected are multiplying. The government is taking aggressive steps to quarantine people, people exposed to infection, and clinical trials for treatment. Subsequently recommends critical care for the aged, children, and health-care personnel. While machine learning methods have been previously used to augment clinical decisions, there is now a demand for "Emergency ML." With rapidly growing datasets, there also remain important considerations when developing and validating ML models.

Methods: This paper reviews the recent study that applies machine-learning technology addressing Corona virus-related disease issues' challenges in different perspectives. The report also discusses various treatment trials and procedures on Corona virus-related disease infected patients providing insights to physicians and the public on the current treatment challenges.

Results: The paper provides the individual with insights into certain precautions to prevent and control the spread of this deadly disease.

Conclusion: This review highlights the utility of evidence-based machine learning prediction tools in several clinical settings, and how similar models can be deployed during the Corona virus-related disease pandemic to guide hospital frontlines and health-care administrators to make informed decisions about patient care and managing hospital volume. Further, the clinical trials conducted so far for infected patients with Corona virus-related disease addresses their results to improve community alertness from the viewpoint of a well-known saying, "prevention is always better."

Keywords: Corona virus-related disease; clinical; complications; machine learning.; pandemic; prevention.

PubMed Disclaimer

LinkOut - more resources