Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 15;103(18):1694-1704.
doi: 10.2106/JBJS.20.00011.

Thermal Stability and in Vitro Elution Kinetics of Alternative Antibiotics in Polymethylmethacrylate (PMMA) Bone Cement

Affiliations

Thermal Stability and in Vitro Elution Kinetics of Alternative Antibiotics in Polymethylmethacrylate (PMMA) Bone Cement

Ashley E Levack et al. J Bone Joint Surg Am. .

Abstract

Background: Amikacin, meropenem, minocycline, and fosfomycin have potential clinical utility for orthopaedic infections; however, their suitability for use in polymethylmethacrylate (PMMA) is poorly understood. The purpose of this study was (1) to quantify the thermal stability of these antibiotics at clinically relevant temperatures and (2) to determine the elution pharmacodynamics of these alternative antibiotics in vitro from PMMA beads of different sizes.

Methods: Polymerization temperatures of 10-mm PMMA beads were measured over time to generate a simulated heating curve. Aqueous solutions of tobramycin, amikacin, meropenem, minocycline, and fosfomycin were subjected to the temperature curves, followed by incubation at 37°C. Minimum inhibitory concentrations of each antibiotic were evaluated against Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. High-dose 4.5-mm, 6-mm, and 10-mm antibiotic-laden PMMA beads (10% antibiotic by weight) were submerged individually in a phosphate-buffered saline solution and incubated at 37°C. Antibiotic elution was determined with use of high-performance liquid chromatography with mass spectrometry.

Results: Tobramycin, amikacin, and fosfomycin demonstrated thermal stability and maintained antimicrobial activity for 28 days. Minocycline and meropenem lost antimicrobial activity against all 3 organisms after 48 hours and 7 days, respectively. Elution concentrations, rates, and cumulative drug mass for tobramycin, amikacin, and meropenem were orders of magnitude higher than minocycline and fosfomycin at each time point.

Conclusions: This study identified notable differences in thermal stability and elution among antibiotics used to treat infections. Amikacin exhibited activity similarly to tobramycin. Meropenem demonstrated favorable elution kinetics and thermal stability in the initial 7-day period.

Clinical relevance: Amikacin and meropenem show pharmacologic promise as potential acceptable alternatives for local delivery in PMMA for treatment of orthopaedic infections. Further work to establish clinical relevance and utility is needed.

PubMed Disclaimer

Conflict of interest statement

Disclosure: This publication was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH) under award number T32 AR007281. On the Disclosure of Potential Conflicts of Interest forms, which are provided with the online version of the article, one or more of the authors checked “yes” to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work (http://links.lww.com/JBJS/G467).

References

    1. Buchholz HW, Engelbrecht H. [Depot effects of various antibiotics mixed with Palacos resins]. Chirurg. 1970 Nov;41(11):511-5. German.
    1. Calhoun JH, Henry SL, Anger DM, Cobos JA, Mader JT. The treatment of infected nonunions with gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res. 1993 Oct;295:23-7.
    1. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001 Dec;72(6):557-71.
    1. Lichstein P, Su S, Hedlund H, Suh G, Maloney WJ, Goodman SB, Huddleston JI 3rd. Treatment of periprosthetic knee infection with a two-stage protocol using static spacers. Clin Orthop Relat Res. 2016 Jan;474(1):120-5.
    1. Vrabec G, Stevenson W, Elguizaoui S, Kirsch M, Pinkowski J. What is the intraarticular concentration of tobramycin using low-dose tobramycin bone cement in TKA: an in vivo analysis? Clin Orthop Relat Res. 2016 Nov;474(11):2441-7. Epub 2016 Aug 3.

MeSH terms

LinkOut - more resources