Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug;58(8):3848-3862.
doi: 10.1007/s12035-021-02390-1. Epub 2021 Apr 15.

The mTOR/NF-κB Pathway Mediates Neuroinflammation and Synaptic Plasticity in Diabetic Encephalopathy

Affiliations

The mTOR/NF-κB Pathway Mediates Neuroinflammation and Synaptic Plasticity in Diabetic Encephalopathy

Ting Xu et al. Mol Neurobiol. 2021 Aug.

Abstract

Diabetic encephalopathy, a severe complication of diabetes mellitus, is characterized by neuroinflammation and aberrant synaptogenesis in the hippocampus leading to cognitive decline. Mammalian target of rapamycin (mTOR) is associated with cognition impairment. Nuclear factor-κB (NF-κB) is a transcription factor of proinflammatory cytokines. Although mTOR has been ever implicated in processes occurring in neuroinflammation, the role of this enzyme on NF-κB signaling pathway remains unclear in diabetic encephalopathy. In the present study, we investigated whether mTOR regulates the NF-κB signaling pathway to modulate inflammatory cytokines and synaptic plasticity in hippocampal neurons. In vitro model was constructed in mouse HT-22 hippocampal neuronal cells exposed to high glucose. With the inhibition of mTOR or NF-κB by either chemical inhibitor or short-hairpin RNA (shRNA)-expressing lentivirus-vector, we examined the effects of mTOR/NF-κB signaling on proinflammatory cytokines and synaptic proteins. The diabetic mouse model induced by a high-fat diet combined with streptozotocin injection was administrated with rapamycin (mTOR inhibitor) and PDTC (NF-κB inhibitor), respectively. High glucose significantly increased mTOR phosphorylation in HT-22 cells. While inhibiting mTOR by rapamycin or shmTOR significantly suppressed high glucose-induced activation of NF-κB and its regulators IKKβ and IκBα, suggesting mTOR is the upstream regulator of NF-κB. Furthermore, inhibiting NF-κB by PDTC and shNF-κB decreased proinflammatory cytokines expression (IL-6, IL-1β, and TNF-α) and increased brain-derived neurotrophic factor (BDNF) and synaptic proteins (synaptophysin and PSD-95) in HT-22 cells under high glucose conditions. Besides, the mTOR and NF-κB inhibitors improved cognitive decline in diabetic mice. The inhibition of mTOR and NF-κB suppressed mTOR/NF-κB signaling pathway, increased synaptic proteins, and improved ultrastructural synaptic plasticity in the hippocampus of diabetic mice. Activating mTOR/NF-κB signaling pathway regulates the pathogenesis of diabetic encephalopathy, such as neuroinflammation, synaptic proteins loss, and synaptic ultrastructure impairment. The findings provide the implication that mTOR/NF-κB is potential new drug targets to treat diabetic encephalopathy.

Keywords: Diabetic encephalopathy; NF-κB; Neuroinflammation; Synaptic plasticity; mTOR.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kuhad A, Chopra K (2007) Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol 576(1-3):34–42. https://doi.org/10.1016/j.ejphar.2007.08.001 - DOI - PubMed
    1. Wessels AM, Scheltens P, Barkhof F, Heine RJ (2008) Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes. Eur J Pharmacol 585(1):88–96. https://doi.org/10.1016/j.ejphar.2007.11.080 - DOI - PubMed
    1. Pei B, Sun J (2018) Pinocembrin alleviates cognition deficits by inhibiting inflammation in diabetic mice. J Neuroimmunol 314:42–49. https://doi.org/10.1016/j.jneuroim.2017.11.006 - DOI - PubMed
    1. Jawale A, Datusalia AK, Bishnoi M, Sharma SS (2016) Reversal of diabetes-induced behavioral and neurochemical deficits by cinnamaldehyde. Phytomedicine 23(9):923–930. https://doi.org/10.1016/j.phymed.2016.04.008 - DOI - PubMed
    1. Elahi M, Hasan Z, Motoi Y, Matsumoto SE, Ishiguro K, Hattori N (2016) Region-specific vulnerability to oxidative stress, neuroinflammation, and tau hyperphosphorylation in experimental diabetes mellitus mice. J Alzheim Dis 51(4):1209–1224. https://doi.org/10.3233/JAD-150820 - DOI

MeSH terms

LinkOut - more resources