Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 8:1158:338414.
doi: 10.1016/j.aca.2021.338414. Epub 2021 Mar 16.

A computational simulation of electromembrane extraction based on Poisson - Nernst - Planck equations

Affiliations

A computational simulation of electromembrane extraction based on Poisson - Nernst - Planck equations

Roshanak Dolatabadi et al. Anal Chim Acta. .

Abstract

Electromembrane extraction (EME) has attracted a great deal of interest in researchers because of its advantages. For analysis, design and optimization purposes, understanding the ion transport mechanisms in the organic supported liquid membrane (SLM) is of prominent importance, where the interplay between the passive diffusion and electric-driven mass transport across SLM affects the mass transfer. In present work, a 2D numerical simulation is developed to examine the mass transfer behavior and the analyte recovery in EME devices. The presented model is capable of describing the effect of different parameters on the recovery of the EME setup. Initial analyte concentration in the sample solution, SLM thickness, applied potential, permittivity, diffusion coefficient, and the reservoir pH within both the sample and acceptor, can be considered as process variables. Predicted results revealed that the most important factors playing key role in EME, are the analyte diffusivity, distribution coefficient of the analyte as well as the level of protonation in both the donor and acceptor solutions. The proposed model is helpful in predicting the mass transfer behavior of the EME process in practical applications.

Keywords: Computational model; Drug concentration; Electromembrane extraction; Finite element method; Nernst-Planck-Poisson equations.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources