Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 23;45(6):fuab024.
doi: 10.1093/femsre/fuab024.

Non-canonical substrates for terpene synthases in bacteria are synthesized by a new family of methyltransferases

Affiliations
Review

Non-canonical substrates for terpene synthases in bacteria are synthesized by a new family of methyltransferases

Birgit Piechulla et al. FEMS Microbiol Rev. .

Abstract

The 'biogenetic isoprene rule', formulated in the mid 20th century, predicted that terpenoids are biosynthesized via polymerization of C5 isoprene units. The polymerizing enzymes have been identified to be isoprenyl diphosphate synthases, products of which are catalyzed by terpene synthases (TPSs) to achieve vast structural diversity of terpene skeletons. Irregular terpenes (e.g, C11, C12, C16 and C17) are also frequently observed, and they have presumed to be synthesized by the modification of terpene skeletons. This review highlights the exciting discovery of an additional route to the biosynthesis of irregular terpenes which involves the action of a newly discovered enzyme family of isoprenyl diphosphate methyltransferases (IDMTs). These enzymes methylate, and sometimes cyclize, the classical isoprenyl diphosphate substrates to produce modified, non-canonical substrates for specifically evolved TPSs. So far, this new pathway has been found only in bacteria. Structure and sequence comparisons of the IDMTs strongly indicate a conservation of their active pockets and overall topologies. Some bacterial IDMTs and TPSs appear in small gene clusters, which may facilitate future mining of bacterial genomes for identification of irregular terpene-producing enzymes. The IDMT-TPS route for terpenoid biosynthesis presents another example of nature's ingenuity in creating chemical diversity, particularly terpenoids, for organismal fitness.

Keywords: bacterial terpene biosynthesis; biosynthetic gene clusters; isoprenyl diphosphate methyltransferases; sodorifen, methyl isoborneol; terpene synthase.

PubMed Disclaimer

Similar articles

Cited by