Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 17;21(1):361.
doi: 10.1186/s12879-021-06036-4.

Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: a case-control study

Affiliations

Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: a case-control study

Seyedeh Elham Rezatofighi et al. BMC Infect Dis. .

Abstract

Background: Urinary Tract Infection (UTI) is one of the most common bacterial infectious diseases which causes considerable morbidity and costly health problems. Uropathogenic Escherichia coli (UPEC), the most common pathogen causing UTI, is a highly heterogeneous group of extraintestinal pathogenic E. coli (ExPEC) which may carry a variety of virulence factors and belonging to different phylogenetic backgrounds. The current study aimed to investigate the frequency and association between various virulence factors (VFs) and phylogenetic groups of UPEC and commensal isolates.

Methods: UPEC and commensal E. coli strains isolated from UTI and feces of healthy humans were compared for the presence of VFs and phylogenetic groups. Association between virulence genes was investigated and cluster analysis was employed.

Results: According to the results, among a 30 virulence markers tested, the pathogenicity-associated island (PAI), papAH, papEF, fimH, fyuA, and traT genes prevalence were statistically significant in UPEC isolates. A strong association was found between the B2 and D phylogenetic groups and clinical isolates of UPEC; while, commensal isolates were mostly associated with phylogenetic group A. The aggregated VFs scores were more than twice higher in the UPEC isolates in comparison with the commensal isolates. Interestingly, the B2 group in both UPEC and commensal isolates had the highest VF scores. A strong positive association was found between several virulence genes. The clustering results demonstrated that UPEC or commensal E. coli isolates were highly heterogeneous due to different composition of their virulence gene pool and pathogenicity islands.

Conclusion: Genetic structure and VFs of UPEC strains vary from region to region; therefore, to control the UTI, the epidemiological aspects and characterization of the UPEC isolates need to be investigated in different regions. Since UPEC isolates are generally originate from the commensal strains, it may be feasible to reduce the UTI burden by interfering the intestinal colonization, particularly in the highly pathogenic clonal lineages such as B2.

Keywords: Extraintestinal Pathogenic E. coli; Phylogenetic group; Urinary tract infection; Uropathogenic Escherichia coli; Virulence factor.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Heat map generated according to statistical association between virulence genes of the Escherichia coli isolates derived from uropathogenic and commensal E. coli isolates. The strong associations between genes are indicated in the circle. No values were introduced in the case of undetected genes
Fig. 2
Fig. 2
Similarity relationships based on composite genomic profiles and phylogenetic groups of Escherichia coli isolates. Commensal and uropathogenic E. coli isolate are shown as blue and purple colors respectively. A, B1, B2, and D groups are shown as red, green, gray, and yellow colors respectively. Major cluster is marked on an oval

Similar articles

Cited by

References

    1. Harwalkar A, Gupta S, Rao A, Srinivasa H. Lower prevalence of hlyD, papC and cnf-1 genes in ciprofloxacin-resistant uropathogenic Escherichia coli than their susceptible counterparts isolated from southern India. J Infect Public Heal. 2014;7(5):413–419. doi: 10.1016/j.jiph.2014.04.002. - DOI - PubMed
    1. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. 2019;11(1):10. 10.1186/s13099-019-0290-0. - PMC - PubMed
    1. Tan CW, Chlebicki MP. Urinary tract infections in adults. Singap Med J. 2016;57(9):485–490. doi: 10.11622/smedj.2016153. - DOI - PMC - PubMed
    1. Agarwal J, Srivastava S, Singh M. Pathogenomics of uropathogenic Escherichia coli. Indian J Med Microbiol. 2012;30(2):141–149. doi: 10.4103/0255-0857.96657. - DOI - PubMed
    1. Chakraborty A, Adhikari P, Shenoy S, Saralaya V. Molecular characterisation of uropathogenic Escherichia coli isolates at a tertiary care hospital in South India. Indian J Med Microbiol. 2017;35(2):305–310. doi: 10.4103/ijmm.IJMM_14_291. - DOI - PubMed

MeSH terms

Substances