Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 20:783:146952.
doi: 10.1016/j.scitotenv.2021.146952. Epub 2021 Apr 8.

Low mobility of CuO and TiO2 nanoparticles in agricultural soils of contrasting texture and organic matter content

Affiliations
Free article

Low mobility of CuO and TiO2 nanoparticles in agricultural soils of contrasting texture and organic matter content

Marie Simonin et al. Sci Total Environ. .
Free article

Abstract

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

Keywords: CDE modelling; Contrasted soils; Dissolved organic carbon; Nanomaterials; Nanoparticles' fate; Transfer.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no conflict of interest.

LinkOut - more resources