Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 28;69(16):4635-4644.
doi: 10.1021/acs.jafc.1c01135. Epub 2021 Apr 18.

Chemical Identity and Functional Characterization of Semiochemicals That Promote the Interactions between Rice Plant and Rice Major Pest Nilaparvata lugens

Affiliations

Chemical Identity and Functional Characterization of Semiochemicals That Promote the Interactions between Rice Plant and Rice Major Pest Nilaparvata lugens

Zhenfei Zhang et al. J Agric Food Chem. .

Abstract

The interaction between food crops and insect pests is mediated by semiochemicals emitted from host plants. These semiochemicals are natural behavioral modifiers and act on the insect olfactory system to locate hosts and preys. In this study, eight rice neuroactive semiochemicals were identified from rice varieties by GC-EAG and GC-MS. Their ability to modify rice pest behaviors was further studied as individual chemicals and physiologically relevant blend. The total amount of each semiochemical and the expression of their biosynthesis genes were significantly higher in pest susceptible variety than in pest-resistant variety and upregulated by the infestation of the pest Nilaparvata lugens (BPH). The semiochemicals emitted by uninfested plants (UIRVs) were more attractive to BPHs. Interestingly, the attractiveness of UIRVs was significantly reduced by the addition of the blend that mimics the natural composition of these semiochemicals emitted by infested plants (IRVs). Our study suggests a mechanism for the spread of pest infestation from infested plants to uninfested plants nearby. UIRVs initially serve as attractive signals to rice insect pests. The pest infestation changes the rice semiochemical profile to be less attractive or even repellent, which pushes further colonization to uninfested plants nearby. The identified semiochemicals can be used for crop protection based on a push-pull strategy.

Keywords: Nilaparvata lugens; brown planthopper; pest colonization; pest resistance; push−pull; rice; semiochemical; terpenes.

PubMed Disclaimer