Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;156(2):145-169.
doi: 10.1046/j.1469-8137.2002.00519.x.

Plant resistance towards insect herbivores: a dynamic interaction

Affiliations
Free article
Review

Plant resistance towards insect herbivores: a dynamic interaction

John A Gatehouse. New Phytol. 2002 Nov.
Free article

Abstract

Plant defences against insect herbivores can be divided into 'static' or constitutive defences, and 'active' or induced defences, although the insecticidal compounds or proteins involved are often the same. Induced defences have aspects common to all plants, whereas the accumulation of constitutive defences is species-specific. Insect herbivores activate induced defences both locally and systemically by signalling pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen peroxide. Plants also respond to insect attack by producing volatiles, which can be used to deter herbivores, to communicate between parts of the plant, or between plants, to induce defence responses. Plant volatiles are also an important component in indirect defence. Herbivorous insects have adapted to tolerate plant defences, and such adaptations can also be constitutive or induced. Insects whose plant host range is limited are more likely to show constitutive adaptation to the insecticidal compounds they will encounter, whereas insects which feed on a wide range of plant species often use induced adaptations to overcome plant defences. Both plant defence and insect adaptation involve a metabolic cost, and in a natural system most plant-insect interactions involving herbivory reach a 'stand-off' where both host and herbivore survive but develop suboptimally. Contents Summary 145 I. Introduction 146 II. Accumulation of defensive compounds and induced resistance 146 III. Signalling pathways in wound-induced resistance 147 IV. Insect modulation of the wounding response 155 V. Insects which evade the wounding response 156 VI. Insect-induced emission of volatiles and tritrophic interactions 157 VII. Insect adaptation to plant defences 160 Conclusions 163 Acknowlegements 163 References 163.

PubMed Disclaimer

References

    1. Alborn T, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945-949.
    1. Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773-784. - PubMed
    1. Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J. 2002. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal 29: 87-98. - PubMed
    1. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabyashi J. 2000a. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512-515. - PubMed
    1. Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J. 2000b. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochemical and Biophysical Research Communications 277: 305-310. - PubMed

LinkOut - more resources