The role of the cytoskeleton in the morphogenesis and function of stomatal complexes
- PMID: 33873710
- DOI: 10.1046/j.1469-8137.2003.00986.x
The role of the cytoskeleton in the morphogenesis and function of stomatal complexes
Abstract
Microtubules (MTs) and actin filaments (AFs) form highly organized arrays in stomatal cells that play key roles in the morphogenesis of stomatal complexes. The cortical MTs controlling the orientation of the depositing cellulose microfibrils (CMs) and affecting the pattern of local wall thickenings define the mechanical properties of the walls of stomatal cells, thus regulating accurately their shape. Besides, they are involved in determination of the cell division plane. Substomatal cavity and stomatal pore formation are also MT-dependent processes. Among the cortical MT arrays, the radial ones lining the periclinal walls are of particular morphogenetic importance. Putative MT organizing centers (MTOCs) function at their focal regions, at least in guard cells (GCs), or alternatively, these regions either organize or nucleate cortical MTs. AFs are involved in cell polarization preceding asymmetrical divisions, in determination of the cell division plane and final cell plate alignment and probably in transduction of stimuli implicated in stomatal complex morphogenesis. Mature kidney-shaped GCs display radial AF arrays, undergoing definite organization cycles during stomatal movement. They are involved in stomatal movement, probably by controlling plasmalemma ion-channel activities. Radial MT arrays also persist in mature GCs, but a role in stomatal function cannot yet be attributed to them. Contents Summary 613 I. Introduction 614 II. Cytoskeleton and development of the stomatal complexes 614 III. Cytoskeleton and stomatal cell shaping 620 IV. Stomatal pore formation 624 V. Substomatal cavity formation 625 VI. Stomatal complex morphogenesis in mutants 626 VII. Cytoskeleton dynamics in functioning stomata 628 VIII. Mechanisms of microtubule organization in stomatal cells 631 IX. Conclusions-perspectives 634 References 635.
Similar articles
-
Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus. II. Guard cells.New Phytol. 1999 Feb;141(2):209-223. doi: 10.1046/j.1469-8137.1999.00348.x. New Phytol. 1999. PMID: 33862927
-
Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L.Cell Motil Cytoskeleton. 2009 Jun;66(6):342-9. doi: 10.1002/cm.20366. Cell Motil Cytoskeleton. 2009. PMID: 19363785
-
Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum.Cell Motil Cytoskeleton. 2007 Jul;64(7):531-48. doi: 10.1002/cm.20203. Cell Motil Cytoskeleton. 2007. PMID: 17443701
-
Cytoskeleton and morphogenesis in brown algae.Ann Bot. 2006 May;97(5):679-93. doi: 10.1093/aob/mcl023. Epub 2006 Feb 8. Ann Bot. 2006. PMID: 16467352 Free PMC article. Review.
-
The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments.New Phytol. 2005 Sep;167(3):721-32. doi: 10.1111/j.1469-8137.2005.01464.x. New Phytol. 2005. PMID: 16101909 Review.
Cited by
-
Architecture and functions of stomatal cell walls in eudicots and grasses.Ann Bot. 2024 Jul 9;134(2):195-204. doi: 10.1093/aob/mcae078. Ann Bot. 2024. PMID: 38757189 Free PMC article. Review.
-
Live imaging of microtubule organization, cell expansion, and intercellular space formation in Arabidopsis leaf spongy mesophyll cells.Plant Cell. 2021 May 5;33(3):623-641. doi: 10.1093/plcell/koaa036. Plant Cell. 2021. PMID: 33955495 Free PMC article.
-
discordia1 and alternative discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize.Plant Cell. 2009 Jan;21(1):234-47. doi: 10.1105/tpc.108.062810. Epub 2009 Jan 23. Plant Cell. 2009. PMID: 19168717 Free PMC article.
-
Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli.Sci Rep. 2017 Feb 7;7:41397. doi: 10.1038/srep41397. Sci Rep. 2017. PMID: 28169290 Free PMC article.
-
The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus.Ann Bot. 2009 Dec;104(7):1373-87. doi: 10.1093/aob/mcp255. Epub 2009 Oct 13. Ann Bot. 2009. PMID: 19825878 Free PMC article.
References
-
- Apostolakos P, Galatis B. 1985a. Studies on the development of the air pores and air chambers of Marchantia paleacea II. Ultrastructure of the initial aperture formation, with particular reference to cortical microtubule organizing centres. Canadian Journal of Botany 63: 744-756.
-
- Apostolakos P, Galatis B. 1985b. Studies on the development of the air pores and air chambers of Marchantia paleacea. III. Microtubule organization in preprophase-prophase initial aperture cells-formation of incomplete preprophase microtubule bands. Protoplasma 128: 120-135.
-
- Apostolakos P, Galatis B. 1985c. Studies on the development of the air pores and air chambers of Marchantia paleacea. IV. Cell plate arrangement in initial aperture cells. Protoplasma 128: 136-146.
-
- Apostolakos P, Galatis B. 1987. Induction, polarity and spatial control of cytokinesis in some abnormal subsidiary cell mother cells of Zea mays. Protoplasma 140: 26-42.
-
- Apostolakos P, Galatis B. 1992. Patterns of microtubule organization in two polyhedral cell types in the gametophyte of the liverwort of Marchantia paleacea Bert. New Phytologist 122: 165-178.
Publication types
LinkOut - more resources
Full Text Sources