Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 18;84(16):649-660.
doi: 10.1080/15287394.2021.1913684. Epub 2021 Apr 19.

Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism

Affiliations

Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism

Eşref Demir. J Toxicol Environ Health A. .

Abstract

The abundant presence and extensive use of polystyrene microplastics (PSMPs) has recently become a serious environmental concern, as impact of exposure to these substances on human health remains unknown. While in vitro studies yield data on adverse effect of PSMPs, in vivo approaches are more relevant for risk assessment. Drosophila melanogaster is one of the most genetically and experimentally accessible model organisms used in biology as an in vivo model. D. melanogaster was selected as a representative in vivo model organism to examine the genotoxic potential of PSMPs at 5 concentrations of three different sizes namely 4, 10, or 20 µm. In particular, the wing somatic mutation and recombination test (SMART), a scalable, time-efficient in vivo assay developed to study genotoxicity of various compounds in a rapid manner at low costs was used. The third-instar Drosophila larvae were exposed to PSMPs through food at 5 concentrations ranging from 0.01-10 mM. Viability (lethality), larval length, morphological deformations, locomotor activity (climbing behavior), and genotoxic effects were the end-points measured. Exposure to PSMPs at 4, 10, or 20 µm produced significant morphological defects, impaired climbing behavior, and genotoxicity as evidenced by the SMART test demonstrating induction of somatic recombination. Significant increases were observed in the frequency of total spots, suggesting that PSMPs might induce genotoxic activity predominantly via initiation of somatic DNA recombination in a concentration-dependent manner.

Keywords: Drosophila melanogaster; Polystyrene microplastics; climbing assay; risk assessment; somatic recombination.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources