Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 14;23(14):8731-8738.
doi: 10.1039/d1cp00656h. Epub 2021 Mar 30.

Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes

Affiliations

Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes

Daniel A Gacek et al. Phys Chem Chem Phys. .

Abstract

In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions which are not fully understood, yet. However, certain excited states of Cars are optically one-photon forbidden ("dark") and can potentially undergo excitation energy transfer (EET) to (B)Chls following two-photon absorption (TPA). The amount of EET is reflected by the differences in TPA and two-photon excitation (TPE) spectra of a complex (multi-pigment) system. Since it is technically and analytically demanding to resolve optically forbidden states, different studies reported varying contributions of Cars and Chls to TPE/TPA spectra. In a study using well-defined 1 : 1 Car-tetrapyrrole dyads TPE contributions of tetrapyrrole molecules, including Chls, and Cars were measured. In these experiments, TPE of Cars dominated over Chl a TPE in a broad wavelength range. Another study suggested only minor contributions of Cars to TPE spectra of pigment-protein complexes such as the plant main light-harvesting complex (LHCII), in particular for wavelengths longer than ∼600/1200 nm. By joining forces and a combined analysis of all available data by both teams, we try to resolve this apparent contradiction. Here, we demonstrate that reconstruction of a wide spectral range of TPE for LHCII and photosystem I (PSI) requires both, significant Car and Chl contributions. Direct comparison of TPE spectra obtained in both studies demonstrates a good agreement of the primary data. We conclude that in TPE spectra of LHCII and PSI, the contribution of Chls is dominating above 600/1200 nm, whereas the contributions of forbidden Car states increase particularly at wavelengths shorter than 600/1200 nm. Estimates of Car contributions to TPA as well as TPE spectra are given for various wavelengths.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources