Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;4(2):233-242.
doi: 10.1089/crispr.2020.0145.

Functional Study of the Type II-A CRISPR-Cas System of Streptococcus agalactiae Hypervirulent Strains

Affiliations

Functional Study of the Type II-A CRISPR-Cas System of Streptococcus agalactiae Hypervirulent Strains

Adeline Pastuszka et al. CRISPR J. 2021 Apr.

Abstract

Nearly all strains of Streptococcus agalactiae, the leading cause of invasive infections in neonates, encode a type II-A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system. Interestingly, S. agalactiae strains belonging to the hypervirulent Sequence Type 17 (ST17) contain significantly fewer spacers in their CRISPR locus than other lineages, which could be the result of a less functional CRISPR-Cas system. Here, we revealed one large deletion in the ST17 cas promoter region and we evaluated its impact on the transcription of cas genes as well as the functionalities of the CRISPR-Cas system. We demonstrated that Cas9 interference is functional and that the CRISPR-Cas system of ST17 strains can still acquire new spacers, despite the absence of a regular cas promoter. We demonstrated that a promoter sequence upstream of srn036, a small RNA partially overlapping the antisense tracrRNA, is responsible for the ST17 CRISPR-Cas adaptation and interference activities.

PubMed Disclaimer

Publication types

LinkOut - more resources