Reconstitution of Detergent-Solubilized Membrane Proteins into Proteoliposomes and Nanodiscs for Functional and Structural Studies
- PMID: 33877620
- DOI: 10.1007/978-1-0716-1394-8_2
Reconstitution of Detergent-Solubilized Membrane Proteins into Proteoliposomes and Nanodiscs for Functional and Structural Studies
Abstract
Reconstitution of detergent-solubilized membrane proteins into phospholipid bilayers allows for functional and structural studies under close-to-native conditions that greatly support protein stability and function. Here we outline the detailed steps for membrane protein reconstitution to result in proteoliposomes and nanodiscs. Reconstitution can be achieved via a number of different strategies. The protocols for preparation of proteoliposomes use detergent removal via dialysis or via nonpolar polystyrene beads, or a mixture of the two methods. In this chapter, the protocols for nanodiscs apply polystyrene beads only. Proteoliposome preparation methods allow for substantial control of the lipid-to-protein ratio, from minimal amounts of phospholipid to high concentrations, type of phospholipid, and mixtures of phospholipids. In addition, dialysis affords a fairly large degree of control and variation of parameters such as rate of reconstitution, temperature, buffer conditions, and proteoliposome size. For the nanodisc approach, which is highly advantageous for ensuring equal access to both membrane sides of the protein as well as fast reconstitution of only a single membrane protein into a well-defined bilayer environment in each nanodisc, the protocols outline how a number of these parameters are more restricted in comparison to the proteoliposome protocols.
Keywords: Bilayer; Detergent; Dialysis; Membrane protein; Nanodiscs; Nonpolar polystyrene beads; Phospholipids; Proteoliposomes; Reconstitution.
Similar articles
-
Rationale for the Quantitative Reconstitution of Membrane Proteins into Proteoliposomes.Methods Mol Biol. 2020;2168:63-72. doi: 10.1007/978-1-0716-0724-4_3. Methods Mol Biol. 2020. PMID: 33582987
-
The nanodisc: a novel tool for membrane protein studies.Biol Chem. 2009 Aug;390(8):805-14. doi: 10.1515/BC.2009.091. Biol Chem. 2009. PMID: 19453280 Review.
-
Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.J Am Chem Soc. 2013 Feb 6;135(5):1919-25. doi: 10.1021/ja310901f. Epub 2013 Jan 25. J Am Chem Soc. 2013. PMID: 23294159 Free PMC article.
-
Nanodisc self-assembly is thermodynamically reversible and controllable.Soft Matter. 2020 Jun 24;16(24):5615-5623. doi: 10.1039/d0sm00336k. Soft Matter. 2020. PMID: 32524103 Free PMC article.
-
Short-chain phospholipids as detergents.Biochim Biophys Acta. 2000 Nov 23;1508(1-2):164-81. doi: 10.1016/s0304-4157(00)00008-3. Biochim Biophys Acta. 2000. PMID: 11090824 Review.
Cited by
-
The Conformational Equilibria of a Human GPCR Compared between Lipid Vesicles and Aqueous Solutions by Integrative 19F-NMR.J Am Chem Soc. 2025 May 28;147(21):17612-17625. doi: 10.1021/jacs.4c15106. Epub 2025 May 16. J Am Chem Soc. 2025. PMID: 40377170
-
In Vitro Glycosylation of the Membrane Protein γ-Sarcoglycan in Nanodiscs.ACS Omega. 2023 Oct 20;8(43):40904-40910. doi: 10.1021/acsomega.3c06135. eCollection 2023 Oct 31. ACS Omega. 2023. PMID: 37929139 Free PMC article.
-
Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes.Biophys J. 2023 Jun 6;122(11):2256-2266. doi: 10.1016/j.bpj.2023.01.013. Epub 2023 Jan 14. Biophys J. 2023. PMID: 36641625 Free PMC article.
-
Uncovering the Mechanisms of Intracellular Membrane Trafficking by Reconstituted Membrane Systems.Membranes (Basel). 2025 May 16;15(5):154. doi: 10.3390/membranes15050154. Membranes (Basel). 2025. PMID: 40422764 Free PMC article. Review.
-
The conformational equilibria of a human GPCR compared between lipid vesicles and aqueous solutions by integrative 19F-NMR.bioRxiv [Preprint]. 2024 Oct 17:2024.10.14.618237. doi: 10.1101/2024.10.14.618237. bioRxiv. 2024. Update in: J Am Chem Soc. 2025 May 28;147(21):17612-17625. doi: 10.1021/jacs.4c15106. PMID: 39464034 Free PMC article. Updated. Preprint.
References
-
- Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 16:347–351 - DOI
-
- Schmidt-Krey I (2007) Electron crystallography of membrane proteins: two-dimensional crystallization and screening by electron microscopy. Methods 41:417–426 - DOI
-
- Kühlbrandt W (1992) Two-dimensional crystallization of membrane proteins. Q Rev Biophys 25:1–49 - DOI
-
- Jap BK, Zulauf M, Scheybani T, Hefti A, Baumeister W, Aebi U, Engel A (1992) 2D crystallization: from art to science. Ultramicroscopy 46:45–84 - DOI
-
- Engel A, Hoenger A, Hefti A, Henn C, Ford RC, Kistler J, Zulauf M (1992) Assembly of 2-D membrane protein crystals: dynamics, crystal order, and fidelity of structure analysis by electron microscopy. J Struct Biol 109:219–234 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources