Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun:150:104457.
doi: 10.1016/j.ijmedinf.2021.104457. Epub 2021 Apr 10.

Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review

Affiliations

Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review

Nehal Hassan et al. Int J Med Inform. 2021 Jun.

Abstract

Background and objectives: Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients at risk of developing infection and subsequent sepsis. This systematic review aims to identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis.

Methods: This systematic review was registered in PROSPERO database (CRD42020158685). We conducted a systematic literature review across 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase. Quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adults in all care settings were eligible for inclusion.

Results: Seventeen articles met our inclusion criteria. We identified 194 predictors that were used to train machine learning algorithms, with 13 predictors used on average across all included studies. The most prevalent predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR<60 mL/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit < 30 %. All included studies used artificial intelligence techniques, with average sensitivity 75.7 ± 17.88, and average specificity 63.08 ± 22.01.

Conclusion: The type of predictors influenced the predictive power and predictive timeframe of the developed machine learning algorithm. Predicting the likelihood of sepsis through artificial intelligence can help concentrate finite resources to those patients who are most at risk. Future studies should focus on developing more sensitive and specific algorithms.

Keywords: Artificial intelligence; Decision-making; Machine learning; Prediction; Sepsis.

PubMed Disclaimer

Publication types