A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20-Yet Progress Continues
- PMID: 33880738
- PMCID: PMC8609066
- DOI: 10.1007/s13311-021-01048-z
A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20-Yet Progress Continues
Abstract
Multiple sclerosis (MS), which is a chronic inflammatory disease of the central nervous system, still represents one of the most common causes of persisting disability with an early disease onset. Growing evidence suggests B cells to play a crucial role in its pathogenesis and progression. Over the last decades, monoclonal antibodies (mabs) against the surface protein CD20 have been intensively studied as a B cell targeting therapy in relapsing MS (RMS) as well as primary progressive MS (PPMS). Pivotal studies on anti-CD20 therapy in RMS showed remarkable clinical and radiological effects, especially on acute inflammation and relapse biology. These results paved the way for further research on the implication of B cells in the pathogenesis of MS. Besides controlling relapse development in RMS, ocrelizumab (OCR) also showed clinical benefits in patients with PPMS and became the first approved drug for this disease course. In this review, we provide an overview of the current anti-CD20 mabs used or tested for the treatment of MS-namely rituximab (RTX), OCR, ofatumumab (OFA), and ublituximab (UB). Besides their effectiveness, we also discuss possible limitations and safety concerns especially in regard to long-term treatment, both for this class of drugs overall as well as for each anti-CD20 mab individually. Additionally, we elucidate to what extent anti-CD20 therapy may alter the function of other immune cells, both directly or indirectly. Finally, we cover the current knowledge on repopulation of CD20+ cells after cessation of anti-CD20 treatment and discuss future aspirations towards alternative, further developed B cell silencing therapies.
Keywords: Anti-CD20 treatment; B cells in MS; Ocrelizumab; Ofatumumab; Rituximab; Ublituximab.
© 2021. The Author(s).
Conflict of interest statement
R. P. receives a medMS doctoral stipend from the Hertie foundation and is supported by the Studienstiftung des deutschen Volkes. M. S. W. receives research support from the Deutsche Forschungsgemeinschaft (DFG; WE 3547/5-1), from Novartis, TEVA, Biogen-Idec, Roche, Merck, and the ProFutura Programm of the Universitätsmedizin Göttingen. M.S.W. is serving as an editor for PLoS One. He received travel funding and/or speaker honoraria from Biogen-Idec, Merck Serono, Novartis, Roche, TEVA, Bayer, and Genzyme.
References
-
- Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020;77:1132–1140. - PMC - PubMed
-
- Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol. 2001;13:1583–1593. - PubMed
-
- Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. - PubMed
-
- Mathias A, Perriard G, Canales M, et al. Increased ex vivo antigen presentation profile of B cells in multiple sclerosis. Mult Scler. 2017;23:802–809. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
