Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 28;10(5):e24811.
doi: 10.2196/24811.

Self-Sampling for SARS-CoV-2 Diagnostic Testing by Using Nasal and Saliva Specimens: Protocol for Usability and Clinical Evaluation

Affiliations

Self-Sampling for SARS-CoV-2 Diagnostic Testing by Using Nasal and Saliva Specimens: Protocol for Usability and Clinical Evaluation

Mohammed Majam et al. JMIR Res Protoc. .

Abstract

Background: SARS-CoV-2 is a novel coronavirus discovered in December 2019 and is currently the cause of the global COVID-19 pandemic. A critical aspect of fighting this pandemic is to obtain accurate and timely test results so that patients who have tested positive for COVID-19 can be identified and isolated to reduce the spread of the virus. Research has shown that saliva is a promising candidate for SARS-CoV-2 diagnostics because its collection is minimally invasive and can be reliably self-administered. However, little research has been conducted on saliva testing and SARS-CoV-2 self-sampling (SARS-CoV-2SS) in Sub-Saharan Africa.

Objective: The primary objective of this study is to comparatively evaluate the clinical sensitivity and specificity of nasal and oral samples self-collected by individuals for SARS-CoV-2 testing against a reference method involving sample collection and testing by a health care professional. The secondary objectives of this study are to evaluate the usability of nasal self-sampling and saliva self-sampling as a sample collection method for SARS-CoV-2 diagnostic testing by using failure mode and error assessment.

Methods: Participants will be recruited from the general population by using various methods, Participants will be screened progressively as they present at the clinical trial sites as well as in primary health care catchment areas in the inner city of Johannesburg, South Africa. In the event that recruitment numbers are low, we will use a mobile van to recruit participants from outlying areas of Johannesburg. We aim to enroll 250 participants into this study in approximately 6 weeks. Two sample types-a self-administered nasal swab and a self-administered saliva sample-will be collected from each participant, and a health care professional will collect a third sample by using a nasopharyngeal swab (ie, the standard reference method).

Results: This protocol has been approved by the University of the Witwatersrand Human Research Ethics Committee on July 31, 2020 (Protocol number EzCov003). As of May 13, 2021, 120 participants have been enrolled into the study.

Conclusions: SARS-CoV-2SS may offer many benefits to individuals, by allowing for initial self-identification of symptoms and collection of samples without involving third parties and potential risk of infection provided the sample can be safely processed via a collection system. The results of this study will provide preliminary data on the acceptability, feasibility, and usability of SARS-CoV-2SS among the general population for its future implementation.

International registered report identifier (irrid): DERR1-10.2196/24811.

Keywords: COVID-19; SARS-CoV-2; SARS-CoV-2SS; South Africa; diagnostic; self-sampling; sensitivity; specificity; testing; usabillity.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Similar articles

Cited by

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(20)30183-5 - DOI - PMC - PubMed
    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–733. doi: 10.1056/NEJMoa2001017. http://europepmc.org/abstract/MED/31978945 - DOI - PMC - PubMed
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7. http://europepmc.org/abstract/MED/32007143 - DOI - PMC - PubMed
    1. COVID-19 Weekly Epidemiology Brief - South Africa, Week 19. National Institute for Communicable Diseases. 2020. [2021-05-05]. https://www.nicd.ac.za/wp-content/uploads/2020/05/Weekly-Epidemiology-Br....
    1. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) World Health Organization. 2020. Jan 30, [2021-05-05]. https://tinyurl.com/z5cvwck7.