Ruthenium-based Photoactive Metalloantibiotics
- PMID: 33882620
- DOI: 10.1111/php.13435
Ruthenium-based Photoactive Metalloantibiotics
Abstract
Antibiotic resistance is one of the world's most urgent public health problems. Antimicrobial photodynamic therapy (aPDT) is a promising therapy to combat the growing threat of antibiotic resistance. The aPDT combines a photosensitizer and light to generate reactive oxygen species to induce bacterial inactivation. Ruthenium polypyridyl complexes are significant because they possess unique photophysical properties that allow them to produce reactive oxygen species upon photoirradiation, which leads to cytotoxicity. These antimicrobial agents cause bacterial cell death by DNA and cytoplasmic membrane damage. This article presents a comprehensive review of photoactive antimicrobial properties of kinetically inert and labile ruthenium complexes, nanoparticles coupled photoactive ruthenium complexes, and photoactive ruthenium nanoparticles. Additionally, limitations of current ruthenium-based photoactive antimicrobial agents and future directions for the development of antibiotic-resistant photoactive antimicrobial agents are discussed. It is important to raise awareness for the ruthenium-based aPDT agents in order to develop a new class of photoactive metalloantibiotics capable of combating antibiotic resistance.
© 2021 American Society for Photobiology.
Similar articles
-
Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy.J Inorg Biochem. 2024 Jan;250:112425. doi: 10.1016/j.jinorgbio.2023.112425. Epub 2023 Nov 7. J Inorg Biochem. 2024. PMID: 37977020 Review.
-
Antimicrobial photodynamic therapy - what we know and what we don't.Crit Rev Microbiol. 2018 Sep;44(5):571-589. doi: 10.1080/1040841X.2018.1467876. Epub 2018 May 11. Crit Rev Microbiol. 2018. PMID: 29749263 Review.
-
Systematic review on antibacterial photodynamic therapeutic effects of transition metals ruthenium and iridium complexes.J Inorg Biochem. 2024 Jun;255:112523. doi: 10.1016/j.jinorgbio.2024.112523. Epub 2024 Mar 11. J Inorg Biochem. 2024. PMID: 38489864
-
Ruthenium(II) Polypyridyl Complexes as Photosensitizers for Antibacterial Photodynamic Therapy: A Structure-Activity Study on Clinical Bacterial Strains.ChemMedChem. 2018 Oct 22;13(20):2229-2239. doi: 10.1002/cmdc.201800392. Epub 2018 Oct 9. ChemMedChem. 2018. PMID: 30157309
-
Targeted Antimicrobial Photodynamic Therapy of Biofilm-Embedded and Intracellular Staphylococci with a Phage Endolysin's Cell Binding Domain.Microbiol Spectr. 2022 Feb 23;10(1):e0146621. doi: 10.1128/spectrum.01466-21. Epub 2022 Feb 23. Microbiol Spectr. 2022. PMID: 35196798 Free PMC article.
Cited by
-
The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging.Int J Mol Sci. 2022 May 30;23(11):6137. doi: 10.3390/ijms23116137. Int J Mol Sci. 2022. PMID: 35682814 Free PMC article.
-
Metals to combat antimicrobial resistance.Nat Rev Chem. 2023 Mar;7(3):202-224. doi: 10.1038/s41570-023-00463-4. Epub 2023 Feb 8. Nat Rev Chem. 2023. PMID: 37117903 Free PMC article. Review.
-
Plasmonic photoreactors-coated plastic tubing as combined-active-and-passive antimicrobial flow sterilizer.J Mater Chem B. 2022 Mar 23;10(12):2001-2010. doi: 10.1039/d1tb02250d. J Mater Chem B. 2022. PMID: 35235640 Free PMC article.
-
Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies.Pharmaceutics. 2021 Nov 24;13(12):1995. doi: 10.3390/pharmaceutics13121995. Pharmaceutics. 2021. PMID: 34959277 Free PMC article. Review.
-
Metal-Based Approaches for the Fight against Antimicrobial Resistance: Mechanisms, Opportunities, and Challenges.J Am Chem Soc. 2025 Apr 16;147(15):12361-12380. doi: 10.1021/jacs.4c16035. Epub 2025 Mar 10. J Am Chem Soc. 2025. PMID: 40063057 Free PMC article. Review.
References
REFERENCES
-
- Centers for Disease Control and Prevention (2021). Available at: https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed on 20 March 2021.
-
- Frei, A., J. Zuegg, A. G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C. G. Dowson, G. Dujardin, N. Jung, A. P. King, A. M. Mansour, M. Massi, J. Moat, H. A. Mohamed, A. K. Renfrew, P. J. Rutledge, P. J. Sadler, M. H. Todd, C. E. Willans, J. J. Wilson, M. A. Cooper and M. A. T. Blaskovich (2020) Metal complexes as a promising source for new antibiotics. Chemical Science 11, 2627-2639.
-
- Kean, W. F. and I. R. Kean (2008) Clinical pharmacology of gold. Inflammopharmacology 16, 112-125.
-
- Jamieson, E. R. and S. J. Lippard (1999) Structure, recognition, and processing of cisplatin−DNA adducts. Chem. Rev. 99, 2467-2498.
-
- Reedijk, J. (1999) Why does cisplatin reach guanine-n7 with competing s-donor ligands available in the cell? Chem. Rev. 99, 2499-2510.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources