Validation of microscopic magnetochiral dichroism theory
- PMID: 33883144
- PMCID: PMC8059922
- DOI: 10.1126/sciadv.abg2859
Validation of microscopic magnetochiral dichroism theory
Abstract
Magnetochiral dichroism (MChD), a fascinating manifestation of the light-matter interaction characteristic for chiral systems under magnetic fields, has become a well-established optical phenomenon reported for many different materials. However, its interpretation remains essentially phenomenological and qualitative, because the existing microscopic theory has not been quantitatively confirmed by confronting calculations based on this theory with experimental data. Here, we report the experimental low-temperature MChD spectra of two archetypal chiral paramagnetic crystals taken as model systems, tris(1,2-diaminoethane)nickel(II) and cobalt(II) nitrate, for light propagating parallel or perpendicular to the c axis of the crystals, and the calculation of the MChD spectra for the Ni(II) derivative by state-of-the-art quantum chemical calculations. By incorporating vibronic coupling, we find good agreement between experiment and theory, which opens the way for MChD to develop into a powerful chiral spectroscopic tool and provide fundamental insights for the chemical design of new magnetochiral materials for technological applications.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures



References
-
- J. B. Biot, Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique, in Mémoires de la classe des sciences mathématiques et physiques de l’Institut impérial de France Année 1811 (F. Didot, 1812), pp. 93–134.
-
- Faraday M. I., Experimental researches in electricity.—Nineteenth series. Philos. Trans. R. Soc. Lond. A 136, 1–20 (1846).
-
- Pasteur L., Relation qui peut exister entre la forme crystalline et la composition chimique sur las cause de la polarization rotatoire. C. R. Acad. Sci. Paris. 26, 535–539 (1848).
-
- Feringa B. L., van Delden R. A., Absolute asymmetric synthesis: The origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 38, 3418–3438 (1999). - PubMed
-
- Wagnière G., Meier A., The influence of a static magnetic field on the absorption coefficient of a chiral molecule. Chem. Phys. Lett. 93, 78–81 (1982).
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources