Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors
- PMID: 33883177
- DOI: 10.1158/1078-0432.CCR-20-4746
Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors
Erratum in
-
Correction: Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors.Clin Cancer Res. 2024 Sep 3;30(17):3957. doi: 10.1158/1078-0432.CCR-24-2131. Clin Cancer Res. 2024. PMID: 39224022 No abstract available.
Abstract
Purpose: Sabatolimab (MBG453) and spartalizumab are mAbs that bind T-cell immunoglobulin domain and mucin domain-3 (TIM-3) and programmed death-1 (PD-1), respectively. This phase I/II study evaluated the safety and efficacy of sabatolimab, with or without spartalizumab, in patients with advanced solid tumors.
Patients and methods: Primary objectives of the phase I/Ib part were to characterize the safety and estimate recommended phase II dose (RP2D) for future studies. Dose escalation was guided by a Bayesian (hierarchical) logistic regression model. Sabatolimab was administered intravenously, 20 to 1,200 mg, every 2 or 4 weeks (Q2W or Q4W). Spartalizumab was administered intravenously, 80 to 400 mg, Q2W or Q4W.
Results: Enrolled patients (n = 219) had a range of cancers, most commonly ovarian (17%) and colorectal cancer (7%); patients received sabatolimab (n = 133) or sabatolimab plus spartalizumab (n = 86). The MTD was not reached. The most common adverse event suspected to be treatment-related was fatigue (9%, sabatolimab; 15%, combination). No responses were seen with sabatolimab. Five patients receiving combination treatment had partial responses (6%; lasting 12-27 months) in colorectal cancer (n = 2), non-small cell lung cancer (NSCLC), malignant perianal melanoma, and SCLC. Of the five, two patients had elevated expression of immune markers in baseline biopsies; another three had >10% TIM-3-positive staining, including one patient with NSCLC who received prior PD-1 therapy.
Conclusions: Sabatolimab plus spartalizumab was well tolerated and showed preliminary signs of antitumor activity. The RP2D for sabatolimab was selected as 800 mg Q4W (alternatively Q3W or Q2W schedules, based on modeling), with or without 400 mg spartalizumab Q4W.
Trial registration: ClinicalTrials.gov NCT02608268.
©2021 American Association for Cancer Research.
References
-
- Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8.
-
- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev Cancer. 2012;12:252–64.
-
- Naing A. Being realistic and optimistic in curing cancer. J Immunother Precis Oncol. 2018;1:53–5.
-
- Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18:645.
-
- Han G, Chen G, Shen B, Li Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol. 2013;4:449.
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials