Scorpion venom heat-resistant synthesized peptide ameliorates 6-OHDA-induced neurotoxicity and neuroinflammation: likely role of Nav 1.6 inhibition in microglia
- PMID: 33886140
- DOI: 10.1111/bph.15502
Scorpion venom heat-resistant synthesized peptide ameliorates 6-OHDA-induced neurotoxicity and neuroinflammation: likely role of Nav 1.6 inhibition in microglia
Abstract
Background and purpose: Microglia-related inflammation is associated with the pathology of Parkinson's disease. Functional voltage-gated sodium channels (VGSCs) are involved in regulating microglial function. Here, we aim to investigate the effects of scorpion venom heat-resistant synthesized peptide (SVHRSP) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease-like mouse model and reveal its underlying mechanism.
Experimental approach: Unilateral brain injection of 6-OHDA was performed to establish Parkinson's disease mouse model. After behaviour test, brain tissues were collected for morphological analysis and protein/gene expression examination. Primary microglia culture was used to investigate the role of sodium channel Nav 1.6 in the regulation of microglia inflammation by SVHRSP.
Key results: SVHRSP treatment attenuated motor deficits, dopamine neuron degeneration, activation of glial cells and expression of pro-inflammatory cytokines induced by 6-OHDA lesion. Primary microglia activation and the production of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) were also suppressed by SVHRSP treatment. In addition, SVHRSP could inhibit mitogen-activated protein kinases (MAPKs) pathway, which plays pivotal roles in the pro-inflammatory response. Notably, SVHRSP treatment suppressed the overexpression of microglial Nav 1.6 induced by 6-OHDA and LPS. Finally, it was shown that the anti-inflammatory effect of SVHRSP in microglia was Nav 1.6 dependent and was related to suppression of sodium current and probably the consequent Na+ /Ca2+ exchange.
Conclusions and implications: SVHRSP might inhibit neuroinflammation and protect dopamine neurons via down-regulating microglial Nav 1.6 and subsequently suppressing intracellular Ca2+ accumulation to attenuate the activation of MAPKs signalling pathway in microglia.
Keywords: Parkinson's disease; SVHRSP; microglia; neuroinflammation; sodium channel Nav1.6.
© 2021 The British Pharmacological Society.
References
REFERENCES
-
- Alam, Q., Alam, M. Z., Mushtaq, G., Damanhouri, G. A., Rasool, M., Kamal, M. A., & Haque, A. (2016). Inflammatory process in Alzheimer's and Parkinson's diseases: Central role of cytokines. Current Pharmaceutical Design, 22, 541-548. https://doi.org/10.2174/1381612822666151125000300
-
- Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP collaborators. (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176(Suppl 1), S21-S141. https://doi.org/10.1111/bph.14748
-
- Alexander, S. P. H., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., & Collaborators C. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 176(Suppl 1), S142-S228. https://doi.org/10.1111/bph.14749
-
- Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112
-
- Annunziato, L., Pignataro, G., & Di Renzo, G. F. (2004). Pharmacology of brain Na+/Ca2+ exchanger: From molecular biology to therapeutic perspectives. Pharmacological Reviews, 56, 633-654. https://doi.org/10.1124/pr.56.4.5
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous