Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 4;93(17):6755-6762.
doi: 10.1021/acs.analchem.1c00490. Epub 2021 Apr 22.

Spatially Offset Raman Spectroscopy-How Deep?

Affiliations
Free article

Spatially Offset Raman Spectroscopy-How Deep?

Sara Mosca et al. Anal Chem. .
Free article

Abstract

Spatially offset Raman spectroscopy (SORS) is a technique for interrogating the subsurface composition of turbid samples noninvasively. This study generically addresses a fundamental question relevant to a wide range of SORS studies, which is how deep SORS probes for any specific spatial offset when analyzing a turbid sample or, in turn, what magnitude of spatial offset one should select to probe a specific depth. This issue is addressed by using Monte Carlo simulations, under the assumption of negligible absorption, which establishes that the key parameter governing the extent of the probed zone for a point-like illumination and point-like collection SORS geometry is the reduced scattering coefficient of the medium. This can either be deduced from literature data or directly estimated from a SORS measurement by evaluating the Raman intensity profile from multiple spatial offsets. Once this is known, the extent of the probed zone can be determined for any specific SORS spatial offset using the Monte Carlo simulation results presented here. The proposed method was tested using experimental data on stratified samples by analyzing the signal detected from a thin layer that was moved through a stack of layers using both non-absorbing and absorbing samples. The proposed simple methodology provides important additional information on SORS measurements with direct relevance to a wide range of SORS applications including biomedical, pharmaceutical, security, forensics, and cultural heritage.

PubMed Disclaimer

Publication types

LinkOut - more resources