Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;5(6):747-756.
doi: 10.1038/s41559-021-01445-9. Epub 2021 Apr 22.

Soil microbiome predictability increases with spatial and taxonomic scale

Affiliations

Soil microbiome predictability increases with spatial and taxonomic scale

Colin Averill et al. Nat Ecol Evol. 2021 Jun.

Abstract

Soil microorganisms shape ecosystem function, yet it remains an open question whether we can predict the composition of the soil microbiome in places before observing it. Furthermore, it is unclear whether the predictability of microbial life exhibits taxonomic- and spatial-scale dependence, as it does for macrobiological communities. Here, we leverage multiple large-scale soil microbiome surveys to develop predictive models of bacterial and fungal community composition in soil, then test these models against independent soil microbial community surveys from across the continental United States. We find remarkable scale dependence in community predictability. The predictability of bacterial and fungal communities increases with the spatial scale of observation, and fungal predictability increases with taxonomic scale. These patterns suggest that there is an increasing importance of deterministic versus stochastic processes with scale, consistent with findings in plant and animal communities, suggesting a general scaling relationship across biology. Biogeochemical functional groups and high-level taxonomic groups of microorganisms were equally predictable, indicating that traits and taxonomy are both powerful lenses for understanding soil communities. By focusing on out-of-sample prediction, these findings suggest an emerging generality in our understanding of the soil microbiome, and that this understanding is fundamentally scale dependent.

PubMed Disclaimer

References

    1. Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: an Analysis of Global Change (Elsevier/Academic Press, 2012).
    1. Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016). - DOI
    1. Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994–11999 (2018). - PubMed - PMC - DOI
    1. Mushinski, R. M. et al. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1814632116 (2019).
    1. Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015). - PubMed - DOI

Publication types

LinkOut - more resources