Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 17;18(3):2599-2613.
doi: 10.3934/mbe.2021132.

Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method

Affiliations
Free article

Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method

Ivan Izonin et al. Math Biosci Eng. .
Free article

Abstract

The paper considers the problem of handling short sets of medical data. Effectively solving this problem will provide the ability to solve numerous classification and regression tasks in case of limited data in health decision support systems. Many similar tasks arise in various fields of medicine. The authors improved the regression method of data analysis based on artificial neural networks by introducing additional elements into the formula for calculating the output signal of the existing RBF-based input-doubling method. This improvement provides averaging of the result, which is typical for ensemble methods, and allows compensating for the errors of different signs of the predicted values. These two advantages make it possible to significantly increase the accuracy of the methods of this class. It should be noted that the duration of the training algorithm of the advanced method remains the same as for existing method. Experimental modeling was performed using a real short medical data. The regression task in rheumatology was solved based on only 77 observations. The optimal parameters of the method, which provide the highest prediction accuracy based on MAE and RMSE, were selected experimentally. A comparison of its efficiency with other methods of this class has been performed. The highest accuracy of the proposed RBF-based additive input-doubling method among the considered ones is established. The method can be modified by using other nonlinear artificial intelligence tools to implement its training and application algorithms and such methods can be applied in various fields of medicine.

Keywords: RBF; input-doubling method; medicine; neural networks; predictive modeling; small data approach.

PubMed Disclaimer

Publication types

LinkOut - more resources