Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul:202:102052.
doi: 10.1016/j.pneurobio.2021.102052. Epub 2021 Apr 21.

A common role for astrocytes in rhythmic behaviours?

Affiliations
Review

A common role for astrocytes in rhythmic behaviours?

Matthew J Broadhead et al. Prog Neurobiol. 2021 Jul.

Abstract

Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.

Keywords: Astrocyte; Gliotransmission; Locomotion; Purines; Respiration; Rhythmic neural networks.

PubMed Disclaimer

Publication types

LinkOut - more resources