Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 15:416:125866.
doi: 10.1016/j.jhazmat.2021.125866. Epub 2021 Apr 12.

Electrochemical adsorption of perfluorooctanoic acid on a novel reduced graphene oxide aerogel loaded with Cu nanoparticles and fluorine

Affiliations

Electrochemical adsorption of perfluorooctanoic acid on a novel reduced graphene oxide aerogel loaded with Cu nanoparticles and fluorine

Longfei Liu et al. J Hazard Mater. .

Abstract

Perfluorooctanoic acid (PFOA) is widely concerned because its serious toxicity to the environment and ecosystems. In order to effectively and conveniently remove PFOA from aqueous solutions, reduced graphene oxide aerogel modified by Cu nanoparticles and fluorine (Cu/F-rGA) was prepared by the microbubble template method as an electrode in electrosorption. The removal capacity of Cu/F-rGA electrode to PFOA was 489% and 45.9% higher at + 0.8 V than that of open circuit and unmodified electrode, respectively. These significant improvements can be attributed to the advantages of Cu/F-rGA in ligand exchange reaction and electrostatic attraction under voltage assistance. The regeneration of Cu/F-rGA electrode maintained 75.51% capacity after 10 times electrosorption-desorption by applying reverse voltage. These properties provided potential for the reuse and application of Cu/F-rGA electrode. The electrosorption isotherm and model results showed that PFOA tended to be parallel to the adsorption site at low temperature and perpendicular at high temperature. The number of PFOA molecules connected to each adsorption site was 0.72-1.76, and the number of adsorption layers of PFOA on the electrode was between 1.46 and 2.87. Findings from this study provide a green and effective strategy to remove PFOA from aqueous solutions with low energy consumption.

Keywords: Aerogel electrode; Electrosorption; Mechanisms; Perfluorooctanoic acid (PFOA); Statistical physics model.

PubMed Disclaimer

Publication types

LinkOut - more resources