The mechanism of sugar-dependent repression of synthesis of catabolic enzymes in Escherichia coli
- PMID: 338995
- DOI: 10.1002/jss.400060404
The mechanism of sugar-dependent repression of synthesis of catabolic enzymes in Escherichia coli
Abstract
Previous studies have indicated that the Escherichia coli adenylate cyclase (AC) activity is controlled by an interaction with the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS). A model for the regulation of AC involving the phosphorylation state of the PTS is described. Kinectic studies support the concept that the velocity of AC is determined by the opposing contributions of PEP-dependent phosphorylation (V1) and sugar-dependent dephosphorylation (V2) of the PTS proteins according to the expression percent VAC=100/[1 + (Max V2/Max V1)]. Physiological parameters influencing the rate of the PTS are discussed in the framework of their effects on cAMP metabolism. Factors that increase cellular concentration of PEP (and stimulate V1) appear to enhance AC activity while increases in extracellular sugar concentration (which stimulate V2) or internal levels of pyruvate (which inhibit V1) inhibit the activity of this enzyme.
Similar articles
-
The Escherichia coli adenylate cyclase complex: activation by phosphoenolpyruvate.J Supramol Struct. 1978;9(2):219-30. doi: 10.1002/jss.400090207. J Supramol Struct. 1978. PMID: 219294
-
[Mechanism of catabolite repression in Escherichia coli bacteria: interaction between transport proteins and adenylate cyclase].Biokhimiia. 1983 Oct;48(10):1624-33. Biokhimiia. 1983. PMID: 6315085 Russian.
-
[2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli].Biokhimiia. 1975 Jan-Feb;40(1):25-31. Biokhimiia. 1975. PMID: 1095077 Russian.
-
Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.Arch Microbiol. 2004 Jan;181(1):26-34. doi: 10.1007/s00203-003-0623-7. Epub 2003 Nov 21. Arch Microbiol. 2004. PMID: 14634719
-
Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships.Bacteriol Rev. 1977 Dec;41(4):856-71. doi: 10.1128/br.41.4.856-871.1977. Bacteriol Rev. 1977. PMID: 339892 Free PMC article. Review. No abstract available.
Cited by
-
Catabolite and transient repression in Escherichia coli do not require enzyme I of the phosphotransferase system.J Bacteriol. 1979 Apr;138(1):275-9. doi: 10.1128/jb.138.1.275-279.1979. J Bacteriol. 1979. PMID: 220212 Free PMC article.
-
Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system.Microbiol Rev. 1989 Mar;53(1):109-20. doi: 10.1128/mr.53.1.109-120.1989. Microbiol Rev. 1989. PMID: 2651862 Free PMC article. Review.
-
The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems.Mol Cell Biochem. 1982 Jul 7;46(1):3-24. doi: 10.1007/BF00215577. Mol Cell Biochem. 1982. PMID: 7050654 Review. No abstract available.
-
Inducer exclusion, by itself, cannot account for the glucose-mediated lac repression of Escherichia coli.Biophys J. 2022 Mar 1;121(5):820-829. doi: 10.1016/j.bpj.2022.01.016. Epub 2022 Jan 20. Biophys J. 2022. PMID: 35065916 Free PMC article.
-
Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient.Proc Natl Acad Sci U S A. 1979 Mar;76(3):1099-103. doi: 10.1073/pnas.76.3.1099. Proc Natl Acad Sci U S A. 1979. PMID: 108676 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Miscellaneous