Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Sep;51(9):1949-1966.
doi: 10.1007/s40279-021-01473-2. Epub 2021 Apr 27.

The Effect of a Single Bout of Continuous Aerobic Exercise on Glucose, Insulin and Glucagon Concentrations Compared to Resting Conditions in Healthy Adults: A Systematic Review, Meta-Analysis and Meta-Regression

Affiliations
Meta-Analysis

The Effect of a Single Bout of Continuous Aerobic Exercise on Glucose, Insulin and Glucagon Concentrations Compared to Resting Conditions in Healthy Adults: A Systematic Review, Meta-Analysis and Meta-Regression

James Frampton et al. Sports Med. 2021 Sep.

Abstract

Background: Elevated glucose and insulin levels are major risk factors in the development of cardiometabolic disease. Aerobic exercise is widely recommended to improve glycaemic control, yet its acute effect on glycaemia and glucoregulatory hormones has not been systematically reviewed and analysed in healthy adults.

Objective: To determine the effect of a single bout of continuous aerobic exercise on circulating glucose, insulin, and glucagon concentrations in healthy adults.

Methods: CENTRAL, CINAHL, Embase, Global Health, HMIC, Medline, PubMed, PsycINFO, ScienceDirect, Scopus and Web of Science databases were searched from inception to May 2020. Papers were included if they reported a randomised, crossover study measuring glucose and/or insulin and/or glucagon concentrations before and immediately after a single bout of continuous aerobic exercise (≥ 30 min) compared to a time-matched, resting control arm in healthy adults. The risk of bias and quality of evidence were assessed using the Cochrane Risk of Bias Tool and GRADE approach, respectively. Random-effects meta-analyses were performed for glucose, insulin, and glucagon. Sub-group meta-analyses and meta-regression were performed for categorical (metabolic state [postprandial or fasted], exercise mode [cycle ergometer or treadmill]) and continuous (age, body mass index, % males, maximal aerobic capacity, exercise duration, exercise intensity) covariates, respectively.

Results: 42 papers (51 studies) were considered eligible: glucose (45 studies, 391 participants), insulin (38 studies, 377 participants) and glucagon (5 studies, 47 participants). Acute aerobic exercise had no significant effect on glucose concentrations (mean difference: - 0.05 mmol/L; 95% CI, - 0.22 to 0.13 mmol/L; P = 0.589; I2: 91.08%, large heterogeneity; moderate-quality evidence). Acute aerobic exercise significantly decreased insulin concentrations (mean difference: - 18.07 pmol/L; 95% CI, - 30.47 to - 5.66 pmol/L; P = 0.004; I2: 95.39%, large heterogeneity; moderate-quality evidence) and significantly increased glucagon concentrations (mean difference: 24.60 ng/L; 95% CI, 16.25 to 32.95 ng/L; P < 0.001; I2: 79.36%, large heterogeneity; moderate-quality evidence). Sub-group meta-analyses identified that metabolic state modified glucose and insulin responses, in which aerobic exercise significantly decreased glucose (mean difference: - 0.27 mmol/L; 95% CI, - 0.55 to - 0.00 mmol/L; P = 0.049; I2: 89.72%, large heterogeneity) and insulin (mean difference: - 42.63 pmol/L; 95% CI, - 66.18 to - 19.09 pmol/L; P < 0.001; I2: 81.29%, large heterogeneity) concentrations in the postprandial but not fasted state. Meta-regression revealed that the glucose concentrations were also moderated by exercise duration and maximal aerobic capacity.

Conclusions: Acute aerobic exercise performed in the postprandial state decreases glucose and insulin concentrations in healthy adults. Acute aerobic exercise also increases glucagon concentrations irrespective of metabolic state. Therefore, aerobic exercise undertaken in the postprandial state is an effective strategy to improve acute glycaemic control in healthy adults, supporting the role of aerobic exercise in reducing cardiometabolic disease incidence.

Prospero registration number: CRD42020191345.

PubMed Disclaimer

Conflict of interest statement

James Frampton, Benjamin Cobbold, Mikhail Nozdrin, Htet Oo, Holly Wilson, Kevin Murphy, Gary Frost and Edward Chambers declare that they have no conflicts of interest relevant to the content of this review.

Figures

Fig. 1
Fig. 1
Flow diagram of paper selection
Fig. 2
Fig. 2
Forest plot of simple effect sizes for studies assessing the effect of a single bout of continuous aerobic exercise on glucose concentrations (mmol/L). Data are presented as mean difference ± 95% CI. Random-effects Sidik–Jonkman model. a,b,c denotes sub-studies. Ezell et al. [43]c refers to Ezell et al. [43]f in Table 1
Fig. 3
Fig. 3
Forest plot of simple effect sizes for studies assessing the effect of a single bout of continuous aerobic exercise on insulin concentrations (pmol/L). Data are presented as mean difference ± 95% CI. Random-effects Sidik–Jonkman model. a,b,c denotes sub-studies. Ezell et al. [43]c refers to Ezell et al. [43]f in Table 1
Fig. 4
Fig. 4
Forest plot of simple effect sizes for studies assessing the effect of a single bout of continuous aerobic exercise on glucagon concentrations (ng/L). Data are presented as mean difference ± 95% CI. Random-effects Sidik–Jonkman model. a,b denotes sub-studies

Similar articles

Cited by

References

    1. Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW. Glycemic control and coronary heart disease risk in persons with and without diabetes. Arch Intern Med. 2005;165:1910. doi: 10.1001/archinte.165.16.1910. - DOI - PubMed
    1. Adams RJ, Appleton SL, Hill CL, Wilson DH, Taylor AW, Chittleborough CR, et al. Independent association of HbA 1c and incident cardiovascular disease in people without diabetes. Obesity. 2009;17:559–563. doi: 10.1038/oby.2008.592. - DOI - PubMed
    1. Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–710. doi: 10.2337/diab.46.4.701. - DOI - PMC - PubMed
    1. Hayashi T, Boyko EJ, Sato KK, McNeely MJ, Leonetti DL, Kahn SE, et al. Patterns of insulin concentration during the OGTT predict the risk of type 2 diabetes in Japanese Americans. Diabetes Care. 2013;36:1229–1235. doi: 10.2337/dc12-0246. - DOI - PMC - PubMed
    1. Stettler C, Allemann S, Jüni P, Cull CA, Holman RR, Egger M, et al. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J. 2006;152:27–38. doi: 10.1016/j.ahj.2005.09.015. - DOI - PubMed