Emergence in 2017-2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily
- PMID: 33905178
- DOI: 10.1111/tbed.14054
Emergence in 2017-2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily
Abstract
Rotavirus A (RVA) is a major etiologic agent of gastroenteritis in children worldwide. Hospital-based surveillance of viral gastroenteritis in paediatric population in Palermo (Italy) from 2017 onwards revealed a sharp increase in G3P[8] RVAs, accounting for 71% of all the RVAs detected in 2019. This pattern had not been observed before in Italy, with G3 RVA usually being detected at rates lower than 3%. In order to investigate this unique epidemiological pattern, the genetic diversity of G3 RVAs identified during a 16-year long surveillance (2004-2019) was explored by systematic sequencing of the VP7 and VP4 genes and by whole genome sequencing of selected G3 strains, representative of the various RVA seasons. Sequence and phylogenetic analyses of the VP7 and VP4 genes revealed the emergence, in 2017 of reassortant equine-like G3P[8], which gradually replaced former G3P[8] strains. The G3P[8] circulating before 2017 showed a Wa-like constellation of genome segments while the G3P[8] that emerged in 2017 had a DS-1-like backbone. On direct inspection of the VP7 and VP4 antigenic epitopes, the equine-like G3P[8] strains possessed several amino acid variations in neutralizing regions compared with vaccine strains. The equine-like G3P[8] RVAs are a further example of the zoonotic impact of animal viruses on human health.
Keywords: DS-1 like genetic backbone; Italy; acute gastroenteritis; equine-like G3P[8]; rotavirus; whole genome sequencing.
© 2021 Wiley-VCH GmbH.
Similar articles
-
First detection of a reassortant G3P[8] rotavirus A strain in Italy: a case report in an 8-year-old child.Virol J. 2019 May 15;16(1):64. doi: 10.1186/s12985-019-1173-1. Virol J. 2019. PMID: 31092258 Free PMC article.
-
Equine-like G3 rotavirus strains as predominant strains among children in Indonesia in 2015-2016.Infect Genet Evol. 2018 Jul;61:224-228. doi: 10.1016/j.meegid.2018.03.027. Epub 2018 Mar 31. Infect Genet Evol. 2018. PMID: 29614325
-
Whole genome characterization of feline-like G3P[8] reassortant rotavirus A strains bearing the DS-1-like backbone genes detected in Vietnam, 2016.Infect Genet Evol. 2019 Sep;73:1-6. doi: 10.1016/j.meegid.2019.04.007. Epub 2019 Apr 9. Infect Genet Evol. 2019. PMID: 30978460
-
Rotavirus Strain Trends in United States, 2009-2016: Results from the National Rotavirus Strain Surveillance System (NRSSS).Viruses. 2022 Aug 15;14(8):1775. doi: 10.3390/v14081775. Viruses. 2022. PMID: 36016397 Free PMC article. Review.
-
Global distribution of group A rotavirus strains in horses: a systematic review.Vaccine. 2013 Nov 19;31(48):5627-33. doi: 10.1016/j.vaccine.2013.08.045. Epub 2013 Aug 28. Vaccine. 2013. PMID: 23994380
Cited by
-
Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela.Viruses. 2025 Mar 13;17(3):410. doi: 10.3390/v17030410. Viruses. 2025. PMID: 40143336 Free PMC article.
-
Rotavirus A in Domestic Pigs and Wild Boars: High Genetic Diversity and Interspecies Transmission.Viruses. 2022 Sep 13;14(9):2028. doi: 10.3390/v14092028. Viruses. 2022. PMID: 36146832 Free PMC article.
-
Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia.Arch Virol. 2023 Jul 31;168(8):215. doi: 10.1007/s00705-023-05838-y. Arch Virol. 2023. PMID: 37524885
-
Comparative analysis of the RVA VP7 and VP4 antigenic epitopes circulating in Iran and the Rotarix and RotaTeq vaccines.Heliyon. 2024 Jul 4;10(13):e33887. doi: 10.1016/j.heliyon.2024.e33887. eCollection 2024 Jul 15. Heliyon. 2024. PMID: 39071626 Free PMC article.
-
14 years of rotavirus A surveillance: unusual dominance of equine-like G3P[8] genotype with DS-1-like genotype constellation after the pandemic, Belgium, 2009 to 2023.Euro Surveill. 2025 Mar;30(12):2400442. doi: 10.2807/1560-7917.ES.2025.30.12.2400442. Euro Surveill. 2025. PMID: 40156349 Free PMC article.
References
REFERENCES
-
- Agbemabiese, C. A., Nakagomi, T., Damanka, S. A., Dennis, F. E., Lartey, B. L., Armah, G. E., & Nakagomi, O. (2019). Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS One, 14, e0217422. https://doi.org/10.1371/journal.pone.0217422
-
- Arana, A., Montes, M., Jere, K. C., Alkorta, M., Iturriza-Gómara, M., & Cilla, G. (2016). Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. Infection Genetics and Evolution, 44, 137-144. https://doi.org/10.1016/j.meegid.2016.06.048
-
- Arista, S., Giammanco, G. M., De Grazia, S., Ramirez, S., Lo Biundo, C., Colomba, C., Cascio, A., & Martella, V. (2006). Heterogeneity and temporal dynamics of evolution of G1 human rotaviruses in a settled population. Journal Virology., 80, 10724-10733. https://doi.org/10.1128/JVI.00340-06
-
- Arista, S., Vizzi, E., Alaimo, C., Palermo, D., & Cascio, A. (1999). Identification of human rotavirus strains with the P[14] genotype by PCR. Journal of Clinical Microbiology, 37, 2706-2708. https://doi.org/10.1128/JCM.37.8.2706-2708.1999
-
- Arista, S., Vizzi, E., Migliore, M. C., Di Rosa, E., & Cascio, A. (2003). High incidence of G9P[8] rotavirus infections in Italian children during the winter season 1999-2000. European Journal Epidemiology., 18, 711-714. https://doi.org/10.1023/A:1024884103757
MeSH terms
LinkOut - more resources
Full Text Sources
Medical