Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 1:128:21-41.
doi: 10.1016/j.actbio.2021.04.036. Epub 2021 Apr 24.

Electrohydrodynamic jet 3D printing in biomedical applications

Affiliations
Review

Electrohydrodynamic jet 3D printing in biomedical applications

Yang Wu. Acta Biomater. .

Abstract

Electrohydrodynamic Jet 3D Printing (e-jetting) is a promising technique developed from electrospinning, which enables precise fiber deposition in a layer-by-layer fashion with customized designs. Several studies have verified that e-jetted scaffolds were able to support cell attachment, proliferation, and extracellular matrix formation, as well as cell infiltration into the scaffold due to the well-defined pores. Besides, e-jetting has also been combined with other techniques to incorporate biomaterials (e.g., hydrogels and cell spheroids) that could not be e-jetted, to promote the biological performance of the scaffold. In the recent decade, applying e-jetting in the fabrication of tissue-engineered scaffolds has drawn a lot of interest. Moreover, efforts have been put to develop varied scaffolds for some specific biomedical applications such as cartilage, tendon, and blood vessel, which exhibited superior mechanical properties and promoted cell behaviors including cellular alignment and differentiation. This review article also provides the reader with some crucial considerations and major limitations of e-jetting, such as scaffold design, printability of large-scale constructs, applicable biomaterials, and cell behaviors. Overall, this review article expounds on perspectives in the context of development and biomedical applications of this technique. STATEMENT OF SIGNIFICANCE: E-jetting technique is able to produce fibers with diameter in micrometer scale, which has been considered as a promising 3D printing technique. This technique has shown promise for regeneration of tissue engineered scaffolds with well-defined structures, which has been reported to apply in regeneration of different tissue types. The superior controllability of the process endows the feasibility of constructing multi-scale scaffolds with great biological mimicry and cellular infiltration. The incorporation of other biomaterials into the e-jetted networks further reinforces the scope of applications as compared to e-jetted scaffolds only. There is no doubt that e-jetting will be a great tool for tissue engineered scaffolding, and this review article will give overall perspectives in this topic.

Keywords: Cellular alignment; Electrohydrodynamic printing; Electrospinning;; Fiber-based scaffold; Tissue engineering.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources