Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug 1;48(15):4189-95.

Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents

Affiliations
  • PMID: 3390813

Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents

H S Friedman et al. Cancer Res. .

Abstract

A series of bifunctional alkylators were tested against the genotypically and phenotypically heterogeneous continuous human medulloblastoma cell lines, TE-671, Daoy, and D283 Med in vitro and against TE-671 and Daoy growing as s.c. and intracranial xenografts in athymic mice. Drugs tested included melphalan, cyclophosphamide, iphosphamide, phenylketocyclophosphamide, thiotepa, 1,3-bis(2-chloroethyl)-1-nitrosourea (in vivo), and busulfan (in vivo). Melphalan and phenylketocyclophosphamide were the most active agents in vitro with drug doses at which there is a 90% reduction in the number of colonies in comparison to controls of 2.13, 5.29, and 4.72 microM for melphalan and 4.60, 5.01, and 4.34 microM for phenylketocyclophosphamide against TE-671, D283 Med, and Daoy, respectively. Melphalan, cyclophosphamide, iphosphamide, phenylketocyclophosphamide, and thiotepa produced significant growth delays against s.c. TE-671 and Daoy xenografts, while no activity could be demonstrated for 1,3-bis(2-chloroethyl)-1-nitrosourea or busulfan. Melphalan, cyclophosphamide, iphosphamide, and thiotepa also produced significant increases in median survival in mice bearing intracranial TE-671 and Daoy xenografts. These results extend our previous studies demonstrating the antitumor activity of nitrogen and phosphoramide mustard-based bifunctional alkylating agents in the treatment of human medulloblastoma continuous cell lines and transplantable xenografts, and support the continued use of these agents in clinical trials.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources