Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds
- PMID: 33910909
- PMCID: PMC8081371
- DOI: 10.1126/sciadv.abe5280
Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds
Abstract
We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures







Similar articles
-
Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electron-Deficient Polymer Processed by Solution Shear Coating.Adv Mater. 2020 Jun;32(23):e2000063. doi: 10.1002/adma.202000063. Epub 2020 May 4. Adv Mater. 2020. PMID: 32363687
-
Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.Acc Chem Res. 2012 Aug 21;45(8):1193-202. doi: 10.1021/ar200283b. Epub 2012 Jun 7. Acc Chem Res. 2012. PMID: 22676381
-
The Chemistry and Applications of Heteroisoindigo Units as Enabling Links for Semiconducting Materials.Acc Chem Res. 2020 Dec 15;53(12):2855-2868. doi: 10.1021/acs.accounts.0c00480. Epub 2020 Nov 17. Acc Chem Res. 2020. PMID: 33201668
-
Conformation Control of Conjugated Polymers.Chemistry. 2020 Dec 9;26(69):16194-16205. doi: 10.1002/chem.202000220. Epub 2020 Sep 23. Chemistry. 2020. PMID: 32346938 Review.
-
Charge transport in high-mobility conjugated polymers and molecular semiconductors.Nat Mater. 2020 May;19(5):491-502. doi: 10.1038/s41563-020-0647-2. Epub 2020 Apr 15. Nat Mater. 2020. PMID: 32296138 Review.
Cited by
-
On-site biosignal amplification using a single high-spin conjugated polymer.Nat Commun. 2025 Jan 4;16(1):396. doi: 10.1038/s41467-024-55369-6. Nat Commun. 2025. PMID: 39755691 Free PMC article.
-
Annihilation-limited long-range exciton transport in high-mobility conjugated copolymer films.Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2413850122. doi: 10.1073/pnas.2413850122. Epub 2025 Apr 22. Proc Natl Acad Sci U S A. 2025. PMID: 40261928 Free PMC article.
-
Spin relaxation of electron and hole polarons in ambipolar conjugated polymers.Nat Commun. 2024 Jan 4;15(1):288. doi: 10.1038/s41467-023-43505-7. Nat Commun. 2024. PMID: 38177094 Free PMC article.
-
The Influence of Interlocking Effects in Conjugated Polymers Synthesized by Aldol Polycondensation on Field-Effect Transistor Properties and Morphology.JACS Au. 2025 Feb 27;5(3):1382-1391. doi: 10.1021/jacsau.5c00003. eCollection 2025 Mar 24. JACS Au. 2025. PMID: 40151251 Free PMC article.
-
Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors.Nat Commun. 2024 Jun 11;15(1):4972. doi: 10.1038/s41467-024-49208-x. Nat Commun. 2024. PMID: 38862491 Free PMC article.
References
-
- Bao Z., Dodabalapur A., Lovinger A. J., Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).
-
- Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., Holmes A. B., Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).
-
- Arias A. C., MacKenzie J. D., McCulloch I., Rivnay J., Salleo A., Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110, 3–24 (2010). - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources