Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 8;10(8):1571.
doi: 10.3390/jcm10081571.

SARS-CoV-2 Renal Impairment in Critical Care: An Observational Study of 42 Cases (Kidney COVID)

Affiliations

SARS-CoV-2 Renal Impairment in Critical Care: An Observational Study of 42 Cases (Kidney COVID)

Antoine-Marie Molina Barragan et al. J Clin Med. .

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to 5% to 16% hospitalization in intensive care units (ICU) and is associated with 23% to 75% of kidney impairments, including acute kidney injury (AKI). The current work aims to precisely characterize the renal impairment associated to SARS-CoV-2 in ICU patients. Forty-two patients consecutively admitted to the ICU of a French university hospital who tested positive for SARS-CoV-2 between 25 March 2020, and 29 April 2020, were included and classified in categories according to their renal function. Complete renal profiles and evolution during ICU stay were fully characterized in 34 patients. Univariate analyses were performed to determine risk factors associated with AKI. In a second step, we conducted a logistic regression model with inverse probability of treatment weighting (IPTW) analyses to assess major comorbidities as predictors of AKI. Thirty-two patients (94.1%) met diagnostic criteria for intrinsic renal injury with a mixed pattern of tubular and glomerular injuries within the first week of ICU admission, which lasted upon discharge. During their ICU stay, 24 patients (57.1%) presented AKI which was associated with increased mortality (p = 0.007), hemodynamic failure (p = 0.022), and more altered clearance at hospital discharge (p = 0.001). AKI occurrence was associated with lower pH (p = 0.024), higher PaCO2 (CO2 partial pressure in the arterial blood) (p = 0.027), PEEP (positive end-expiratory pressure) (p = 0.027), procalcitonin (p = 0.015), and CRP (C-reactive protein) (p = 0.045) on ICU admission. AKI was found to be independently associated with chronic kidney disease (adjusted OR (odd ratio) 5.97 (2.1-19.69), p = 0.00149). Critical SARS-CoV-2 infection is associated with persistent intrinsic renal injury and AKI, which is a risk factor of mortality. Mechanical ventilation settings seem to be a critical factor of kidney impairment.

Keywords: SARS-CoV-2; acute kidney injury; intrinsic renal injury; pneumonia; proteinuria.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chord diagrams representing characteristics of kidney injury during the ICU stay. (a) Relationship between kidney function estimated by the 2012 Kidney Disease: Improving Global Outcome (KDIGO) and intrinsic kidney injury within the first week after ICU admission; (b) Relationship between kidney function estimated by KDIGO and intrinsic kidney injury on ICU discharge; (c) Evolution of the intrinsic kidney injury between the first week after ICU admission and ICU discharge. The bottom part of the diagram represents patients sorted by their KDIGO classification, and the top part represents the same patients ranked according to the intrinsic kidney injury diagnosis made by profiling urinary analysis. Ribbons show for every patient the connection between kidney injury and function.

Similar articles

Cited by

References

    1. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019(COVID-19) outbreak in China. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. - DOI - PubMed
    1. Phua J., Weng L., Ling L., Egi M., Lim C.M., Divatia J.V., Shrestha B.R., Arabi Y.M., Ng J., Gomersall C.D., et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020;8:506–517. doi: 10.1016/S2213-2600(20)30161-2. - DOI - PMC - PubMed
    1. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020;382:2012–2022. doi: 10.1056/NEJMoa2004500. - DOI - PMC - PubMed
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA-J. Am. Med. Assoc. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. - DOI - PubMed

LinkOut - more resources