Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 14;9(4):834.
doi: 10.3390/microorganisms9040834.

Presence of Broad-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Zoo Mammals

Affiliations

Presence of Broad-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Zoo Mammals

Chloë De Witte et al. Microorganisms. .

Abstract

Broad-spectrum beta-lactamase (BSBL)-producing Enterobacteriaceae impose public health threats. With increased popularity of zoos, exotic animals are brought in close proximity of humans, making them important BSBL reservoirs. However, not much is known on the presence of BSBLs in zoos in Western Europe. Fecal carriage of BSBL-producing Enterobacteriaceae was investigated in 38 zoo mammals from two Belgian zoos. Presence of bla-genes was investigated using PCR, followed by whole-genome sequencing and Fourier-transform infrared spectroscopy to cluster acquired resistance encoding genes and clonality of BSBL-producing isolates. Thirty-five putatively ceftiofur-resistant isolates were obtained from 52.6% of the zoo mammals. Most isolates were identified as E. coli (25/35), of which 64.0% showed multidrug resistance (MDR). Most frequently detected bla-genes were CTX-M-1 (17/25) and TEM-1 (4/25). Phylogenetic trees confirmed clustering of almost all E. coli isolates obtained from the same animal species. Clustering of five isolates from an Amur tiger, an Amur leopard, and a spectacled bear was observed in Zoo 1, as well as for five isolates from a spotted hyena and an African lion in Zoo 2. This might indicate clonal expansion of an E. coli strain in both zoos. In conclusion, MDR BSBL-producing bacteria were shown to be present in the fecal microbiota of zoo mammals in two zoos in Belgium. Further research is necessary to investigate if these bacteria pose zoonotic and health risks.

Keywords: BSBLs; Escherichia coli; antimicrobial resistance; zoo animals; zoonotic.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Phylogenetic tree based on the concatenated core gene alignment of Escherichia spp. isolates obtained from various zoo mammals. The scale-bar represents 1% differences in nucleotide sequences. All isolates were identified as E. coli, except for μ, which was identified as E. marmotae.
Figure 2
Figure 2
Phylogenetic tree based on the concatenated alignment of the high-quality SNPs alignment of Escherichia spp. isolates obtained from various zoo mammals. The scale-bar represents 1% differences in nucleotide sequences. All isolates were identified as E. coli, except for μ, which was identified as E. marmotae.
Figure 3
Figure 3
IR Biotyper generated dendrogram showing clustering of Escherichia spp. isolates obtained from various zoo mammals. Isolates that belong to the same cluster, using a cut-off of 0.200, are indicated with orange branches. All isolates were identified as E. coli, except for μ, which was identified as E. marmotae.

References

    1. Smet A., Martel A., Persoons D., Dewulf J., Heyndrickx M., Herman L., Haesebrouck F., Butaye P. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010;34:295–316. doi: 10.1111/j.1574-6976.2009.00198.x. - DOI - PubMed
    1. Munita J.M., Arias C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016;4:481–511. doi: 10.1128/microbiolspec.VMBF-0016-2015. - DOI - PMC - PubMed
    1. Coque T.M., Baquero F., Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13:19044. doi: 10.2807/ese.13.47.19044-en. - DOI - PubMed
    1. Dorado-García A., Smid J.H., van Pelt W., Bonten M.J.M., Fluit A.C., van den Bunt G., Wagenaar J.A., Hordijk J., Dierikx C.M., Veldman K.T., et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018;73:339–347. doi: 10.1093/jac/dkx397. - DOI - PubMed
    1. Dobiasova H., Dolejska M., Jamborova I., Brhelova E., Blazkova L., Papousek I., Kozlova M., Klimes J., Cizek A., Literak I. Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids among Escherichia coli isolates from zoo animals, Czech Republic. FEMS Microbiol. Ecol. 2013;85:604–611. doi: 10.1111/1574-6941.12149. - DOI - PubMed

LinkOut - more resources