Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper CM334 and Bell Pepper Dempsey
- PMID: 33920210
- PMCID: PMC8070316
- DOI: 10.3390/ijms22083921
Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper CM334 and Bell Pepper Dempsey
Abstract
Peppers (Capsicum annuum L.) are the most widespread and cultivated species of Solanaceae in subtropical and temperate countries. These vegetables are economically attractive worldwide. Although whole-genome sequences of peppers and genome-editing tools are currently available, the precision editing of peppers is still in its infancy because of the lack of a stable pepper transformation method. Here, we employed three Agrobacterium tumefaciens strains-AGL1, EHA101, and GV3101-to investigate which Agrobacterium strain could be used for pepper transformation. Hot pepper CM334 and bell pepper Dempsey were chosen in this study. Agrobacterium tumefaciens GV3101 induced the highest number of calli in cv. Dempsey. All three strains generated similar numbers of calli for cv. CM334. We optimized a suitable concentration of phosphinothricin (PPT) to select a CRISPR/Cas9 binary vector (pBAtC) for both pepper types. Finally, we screened transformed calli for PPT resistance (1 and 5 mg/L PPT for cv. CM334 and Dempsey, respectively). These selected calli showed different indel frequencies from the non-transformed calli. However, the primary indel pattern was consistent with a 1-bp deletion at the target locus of the C. annuumMLO gene (CaMLO2). These results demonstrate the different sensitivity between cv. CM334 and Dempsey to A. tumefaciens-mediated callus induction, and a differential selection pressure of PPT via pBAtC binary vector.
Keywords: Agrobacterium tumefaciens; CRISPR/Cas9; CaMLO2; Capsicum annuum CM334; Capsicum annuum Dempsey; pBAtC binary vector.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures





Similar articles
-
A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.BMC Plant Biol. 2020 Oct 1;20(1):449. doi: 10.1186/s12870-020-02665-0. BMC Plant Biol. 2020. PMID: 33004008 Free PMC article.
-
Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'.Plant Signal Behav. 2019;14(7):1604016. doi: 10.1080/15592324.2019.1604016. Epub 2019 Apr 13. Plant Signal Behav. 2019. PMID: 30983498 Free PMC article.
-
Harnessing CRISPR/Cas9 for Enhanced Disease Resistance in Hot Peppers: A Comparative Study on CaMLO2-Gene-Editing Efficiency across Six Cultivars.Int J Mol Sci. 2023 Nov 26;24(23):16775. doi: 10.3390/ijms242316775. Int J Mol Sci. 2023. PMID: 38069102 Free PMC article.
-
Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.Sci China Life Sci. 2020 Oct;63(10):1491-1498. doi: 10.1007/s11427-020-1685-9. Epub 2020 Mar 27. Sci China Life Sci. 2020. PMID: 32279281 Review.
-
Viromes of 15 Pepper (Capsicum annuum L.) Cultivars.Int J Mol Sci. 2022 Sep 10;23(18):10507. doi: 10.3390/ijms231810507. Int J Mol Sci. 2022. PMID: 36142418 Free PMC article. Review.
Cited by
-
Genetic Evidence of SpGH9A3 in Leaf Morphology Variation of Spathiphyllum 'Mojo'.Genes (Basel). 2024 Aug 28;15(9):1132. doi: 10.3390/genes15091132. Genes (Basel). 2024. PMID: 39336723 Free PMC article.
-
Developing an Optimized Protocol for Regeneration and Transformation in Pepper.Genes (Basel). 2024 Aug 2;15(8):1018. doi: 10.3390/genes15081018. Genes (Basel). 2024. PMID: 39202378 Free PMC article.
-
Strategies to develop climate-resilient chili peppers: transcription factor optimization through genome editing.Planta. 2025 Jun 17;262(2):30. doi: 10.1007/s00425-025-04747-5. Planta. 2025. PMID: 40526281 Free PMC article. Review.
-
Emerging Strategies Mold Plasticity of Vegetable Plants in Response to High Temperature Stress.Plants (Basel). 2022 Apr 1;11(7):959. doi: 10.3390/plants11070959. Plants (Basel). 2022. PMID: 35406939 Free PMC article.
-
The mitochondrial genome data of the Capsicum annuum cv. Dempsey (Solanaceae).Data Brief. 2025 May 9;60:111640. doi: 10.1016/j.dib.2025.111640. eCollection 2025 Jun. Data Brief. 2025. PMID: 40502657 Free PMC article.
References
-
- Lyngkjær M.F., Newton A.C., Atzema J.L., Baker S.J. The Barley mlo-gene: An important powdery mildew resistance source. Agronomie. 2000;20:745–756. doi: 10.1051/agro:2000173. - DOI
-
- Acevedo-Garcia J., Gruner K., Reinstädler A., Kemen A., Kemen E., Cao L., Takken F.L.W., Reitz M.U., Schäfer P., O’Connell R.J., et al. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci. Rep. 2017;7:9319. doi: 10.1038/s41598-017-07188-7. - DOI - PMC - PubMed
MeSH terms
Grants and funding
- Project No. PJ01477602/the New Breeding Technologies Development Program, Rural Devel-opment Administration (RDA)
- NRF-2018R1A2B6006233/the Basic Science Research Program of the National Research Foundation of Korea
- 2019 URP/the Korea Foundation for the Advancement of Science & Creativity (KOFAC), and funded by the Korean Government (MOE)
LinkOut - more resources
Full Text Sources
Other Literature Sources