Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction
- PMID: 33923299
- PMCID: PMC8123145
- DOI: 10.3390/ijms22094460
Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction
Abstract
The metabolism of glioblastoma (GBM), the most aggressive and lethal primary brain tumor, is flexible and adaptable to different adverse conditions, such as nutrient deprivation. Beyond glycolysis, altered lipid metabolism is implicated in GBM progression. Indeed, metabolic subtypes were recently identified based on divergent glucose and lipid metabolism. GBM is also characterized by an immunosuppressive microenvironment in which myeloid-derived suppressor cells (MDSCs) are a powerful ally of tumor cells. Increasing evidence supports the interconnection between GBM and MDSC metabolic pathways. GBM cells exert a crucial contribution to MDSC recruitment and maturation within the tumor microenvironment, where the needs of tumor-infiltrating lymphocytes (TILs) with antitumor function are completely neglected. In this review, we will discuss the unique or alternative source of energy exploited by GBM and MDSCs, exploring how deprivation of specific nutrients and accumulation of toxic byproducts can induce T-cell dysfunction. Understanding the metabolic programs of these cell components and how they impact fitness or dysfunction will be useful to improve treatment modalities, including immunotherapeutic strategies.
Keywords: glioblastoma; metabolism; myeloid derived suppressor cells (MDSCs), tumor infiltrating lymphocytes (TILs).
Conflict of interest statement
The authors declare that they have no conflict of interests.
Figures

References
-
- Wang L.-B., Karpova A., Gritsenko M.A., Kyle J.E., Cao S., Li Y., Rykunov D., Colaprico A., Rothstein J.H., Hong R., et al. Clinical Proteomic Tumor Analysis Consortium Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39:509–528.e20. doi: 10.1016/j.ccell.2021.01.006. - DOI - PMC - PubMed
-
- Verhaak R.G.W., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., et al. Cancer Genome Atlas Research Network Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020. - DOI - PMC - PubMed
-
- Wang Q., Hu B., Hu X., Kim H., Squatrito M., Scarpace L., deCarvalho A.C., Lyu S., Li P., Li Y., et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell. 2018;33:152. doi: 10.1016/j.ccell.2017.12.012. - DOI - PMC - PubMed
-
- Garofano L., Migliozzi S., Oh Y.T., D’Angelo F., Najac R.D., Ko A., Frangaj B., Caruso F.P., Yu K., Yuan J., et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Cancer. 2021;2:141–156. doi: 10.1038/s43018-020-00159-4. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical