Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 16;14(4):369.
doi: 10.3390/ph14040369.

Thymoquinone, as a Novel Therapeutic Candidate of Cancers

Affiliations
Review

Thymoquinone, as a Novel Therapeutic Candidate of Cancers

Belal Almajali et al. Pharmaceuticals (Basel). .

Abstract

To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.

Keywords: angiogenesis; apoptosis; cancers; nanoparticle; proliferation; thymoquinone.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
TQ encapsulated in different nanoparticle formulations. (A) TQ entrapped within the polymeric core of a polymeric nanoparticle. (B) Structure of lipid nanoparticle containing TQ sandwiched between two layers of charged ionizable lipids. (C) The chitosan nanoparticle typically possesses positive surface charges and mucoadhesive properties that can adhere to mucus membranes and release TQ in a sustained release manner.
Figure 2
Figure 2
Major anti-tumorigenic properties of TQ. Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG. TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
Figure 3
Figure 3
The double action of TQ on DNA methylation. (A) TQ has the potential to repair the epigenetic aberrations in cancer cells and upregulation of tumor suppressor genes such as p53, p73. It leads to the downregulation of DNA methyltransferase DNMT1. (B) TQ can methylate the CpG islands of genomic DNA.
Figure 4
Figure 4
The effect of TKI and TQ treatment combination on cancer cells. In the absence of TSG-negative regulation due to hypermethylation, there will be constitutive activation of signaling pathways even though TKI has inhibited TK, resulting in resistance to TKI. However, after treatment with TQ, there will be reactivation of Tumor suppressor genes (TSG) resulting in inhibition of signaling pathways leading to suppression of cancer cell proliferation.

References

    1. Imran M., Rauf A., Khan I.A., Shahbaz M., Qaisrani T.B., Fatmawati S., Abu-Izneid T., Imran A., Rahman K.U., Gondal T.A. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother. 2018;106:390–402. doi: 10.1016/j.biopha.2018.06.159. - DOI - PubMed
    1. Ahmad N., Ahmad R., Al-Layly A., Al-Shawi H., Al-Ali A., Amir M., Mostafa A. Ultra-high-performance liquid chro-matography-based identification and quantification of thymoquinone in Nigella sativa extract from different geographical re-gions. Pharmacogn. Mag. 2018;14:471. doi: 10.4103/pm.pm_119_18. - DOI
    1. Awad A.S.M., Al Haleem E.N.A., El-Bakly W.M., Sherief M.A. Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016;389:381–391. doi: 10.1007/s00210-015-1207-1. - DOI - PubMed
    1. Ebrahimi S.S., Oryan S., Izadpanah E., Hassanzadeh K. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol. Lett. 2017;276:108–114. doi: 10.1016/j.toxlet.2017.05.018. - DOI - PubMed
    1. Abulfadl Y.S., El-Maraghy N.N., Ahmed A.E., Nofal S., Abdel-Mottaleb Y., Badary A.O. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum. Exp. Toxicol. 2018;37:1092–1104. doi: 10.1177/0960327118755256. - DOI - PubMed

LinkOut - more resources