Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;51(2):486-90.
doi: 10.1111/j.1471-4159.1988.tb01064.x.

Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis

Affiliations

Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis

R F Butterworth et al. J Neurochem. 1988 Aug.

Abstract

Portocaval anastomosis (PCA) in the rat leads, within 4 weeks, to severe liver atrophy, sustained hyperammonemia, and increased brain ammonia. Because brain is not equipped with an effective urea cycle, removal of ammonia involves glutamine synthesis and PCA results in significantly increased brain glutamine. Glutamine synthetase activities, however, are decreased by 15% in cerebral cortex and are unchanged in brainstem of shunted rats. Administration of ammonium acetate to rats following PCA results in severe encephalopathy (loss of righting reflex and, ultimately, coma). Glutamine concentrations in brainstem of comatose rats are increased a further two-fold, whereas those of cerebral cortex are unchanged. Consequently, ammonia levels in cerebral cortex reach disproportionately high levels (of the order of 5 mM). These findings suggest a limitation in the capacity of cerebral cortex to remove additional blood-borne ammonia by glutamine formation following PCA. Such mechanisms may explain the hypersensitivity of rats with PCA and of patients with portal-systemic shunting to small increases of blood ammonia. Disproportionately high levels of brain ammonia in certain regions, such as cerebral cortex, may then result in alterations of inhibitory neurotransmission and, ultimately, loss of cellular (astrocytic) integrity.

PubMed Disclaimer

Publication types

LinkOut - more resources