The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport
- PMID: 33926258
- PMCID: PMC8606958
- DOI: 10.1177/15353702211010415
The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Keywords: Calcium-sensing receptor; FAM111A; calciotropic hormones; calcium homeostasis; calcium transport; intestine; kidney; signaling cascades.
Conflict of interest statement
Figures
References
-
- Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993; 366:575–80 - PubMed
-
- Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 2013; 27:333–43 - PubMed
-
- Timmers HJ, Karperien M, Hamdy NA, de Boer H, Hermus AR. Normalization of serum calcium by cinacalcet in a patient with hypercalcaemia due to a de novo inactivating mutation of the calcium-sensing receptor. J Intern Med 2006; 260:177–82 - PubMed
-
- Cetani F, Picone A, Cerrai P, Vignali E, Borsari S, Pardi E, Viacava P, Naccarato AG, Miccoli P, Kifor O, Brown EM, Pinchera A, Marcocci C. Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca(2+) set-point in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2000; 85:4789–94 - PubMed
-
- Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 2012; 122:3355–67 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
