Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun;17(6):333-348.
doi: 10.1038/s41582-021-00487-8. Epub 2021 Apr 29.

Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers

Affiliations
Review

Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers

Björn F Vahsen et al. Nat Rev Neurol. 2021 Jun.

Abstract

The prevailing motor neuron-centric view of amyotrophic lateral sclerosis (ALS) pathogenesis could be an important factor in the failure to identify disease-modifying therapy for this neurodegenerative disorder. Non-neuronal cells have crucial homeostatic functions within the CNS and evidence of involvement of these cells in the pathophysiology of several neurodegenerative disorders, including ALS, is accumulating. Microglia and astrocytes, in crosstalk with peripheral immune cells, can exert both neuroprotective and adverse effects, resulting in a highly nuanced range of neuronal and non-neuronal cell interactions. This Review provides an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of ALS and the emerging potential of non-neuronal cell biomarkers to advance therapeutic development.

PubMed Disclaimer

References

    1. Talbot, K., Feneberg, E., Scaber, J., Thompson, A. G. & Turner, M. R. Amyotrophic lateral sclerosis: the complex path to precision medicine. J. Neurol. 265, 2454–2462 (2018). - PubMed - PMC - DOI
    1. Al-Chalabi, A., van den Berg, L. H. & Veldink, J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat. Rev. Neurol. 13, 96–104 (2017). - PubMed - DOI
    1. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014). - PubMed - DOI
    1. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011). - PubMed - PMC - DOI
    1. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). - PubMed - DOI

Publication types

MeSH terms

LinkOut - more resources